Kevin K. Schwarm

Kevin.K.Schwarm@jpl.nasa.gov | (818) 393-3281 | Los Angeles, CA

Education

Ph.D. – Mechanical Engineering Dissertation: Real-time laser absorption spectroscopy for polyfuel combustion engine University of California, Los Angeles (UCLA) – Los Angeles, CA Advisor: Prof. R. Mitchell Spearrin	October 2023
M.S. – Mechanical Engineering University of California, Los Angeles (UCLA) – Los Angeles, CA	June 2020
B.S. – Mechanical Engineering University of Miami – Miami, FL	May 2016
Professional Experience	
Jet Propulsion Laboratory – Pasadena, CA	November 2023 – Present

JPL Postdoctoral Fellow

- Development of miniature tunable laser spectrometers for planetary science missions
- Lead WISTLS project for water isotope analysis on the lunar surface

UCLA – Los Angeles, CA Laser Spectroscopy & Gas Dynamics Laboratory

Laboratory Studies and Atmospheric Observations Group

Graduate Researcher

- Developed novel laser absorption spectroscopy-based sensors for combustion, medical, and environmental applications
- Managed projects through full lifecycles from inception to procurement, design, manufacturing, testing and final presentation of work in peer-reviewed journals and conferences
- Coordinated with funding agencies and industry collaborators on project goals and technical reports
- Mentored undergraduate and graduate students to foster a collaborative team environment with realistic goals and tangible milestones within aggressive project timelines

Select Research Projects

UCLA – Los Angeles, CA Adaptive Polyfuel Camless Reciprocating Engine

- Designed a laser absorption sensor utilizing multi-pass optics and fiber-coupling for cycle-resolved (10 kHz) analysis of high-temperature (>1000 K) exhaust in production reciprocating piston engines
- Integrated the sensor into a commercial IC engine (Honda EU7000is) and quantified exhaust temperature, CO and NO emissions in response to low-carbon fueling with natural gas, ammonia, and hydrogen
- Implemented minimal-size neural networks onto an FPGA for end-to-end processing of laser absorption sensor data in real-time with latencies below 100 µs
- Designed and manufactured an electro-hydraulic camless valvetrain for deployment on the commercial IC engine for future work in optimizing performance and fuel flexibility through real-time feedback control

UCLA – Los Angeles, CA

Mid-Infrared Laser Absorption Imaging

- Developed a novel imaging diagnostic expanding mid-infrared laser absorption spectroscopy capability to highresolution (<100 µm) and time-resolved (2 kHz) imaging of small-scale flames
- Designed optical systems and flame burner geometries to maximize the ability to capture flame chemistry and structure given limitations in available high-speed infrared camera hardware
- Implemented diffraction filtering, machine learning and tomographic algorithms to reconstruct 2D cinematography and quantitative 3D spatial profiles of temperature and species concentrations (CO, CO₂, CH₄, C₂H₆)

January 2020 – October 2023

September 2018 – December 2022

September 2017 – October 2023

UCLA with Opto-Knowledge Systems, Inc. – Los Angeles, CA Aerial Mapping of Wildland Fire Emissions

- Collaborated with Opto-Knowledge engineers to develop a compact (<10 lbs, <0.5 ft³) laser absorption- and NDIR-based spectrometer for UAV deployment to measure airborne CO and CO₂ concentrations
- Quantified 3D spatial profiles (>100 m) and temporal evolution (>1 Hz resolution) of emissions over a series of active forest burns during a field campaign at the UC Berkeley Blodgett Forest Research Station
- Coordinated with academic and industry research partners at the field campaign to maximize measurement quality, evaluate complimentary sensors and analyze emissions factors of burned vegetation

UCLA with UCLA Mattel Children's Hospital – Los Angeles, CA Breath Acetone Sensor for Ketogenic Diet Therapy

August 2018 – November 2020

- Developed a laser absorption sensor for detecting trace acetone concentrations (0.1 200 ppm) in human breath to monitor ketogenic diet therapy for childhood epilepsy patients
- Utilized a Herriott optical cell (238-pass) with multi-species wavelength modulation spectroscopy to increase dynamic range and correct for interference from other absorbing species in convoluted breath mixtures
- Instructed medical professionals and patients on repeatable breath sample collection for valid comparison to blood samples within a pilot clinical study

Honors and Awards

National Defense Science and Engineering Graduate (NDSEG) Fellowship	2018 – 2021
Cum Laude – University of Miami	2016
Tau Beta Pi Honor Society	2016
Bi Tau Sigma Honor Society	2014
Pi Tau Sigma Honor Society	2014
Sigma Alpha Mu Foundation Young Scholars Program	2014

Publications

- [1] Schwarm, K.K., Spearrin, R.M. (2023). Real-time FPGA-based laser absorption spectroscopy using on-chip machine learning for 10 kHz intra-cycle emissions sensing towards adaptive reciprocating engines. *Applications in Energy and Combustion Science, In Press.* https://doi.org/10.1016/j.jaecs.2023.100231
- [2] Wei, C., Schwarm, K.K., Pineda, D.I., Spearrin, R.M. (2023). Quantitative volumetric laser absorption imaging of methane and temperature in flames utilizing line-mixing effects. *Proceedings of the Combustion Institute*. https://doi.org/10.1016/j.proci.2022.07.092
- [3] Schwarm, K.K., Minesi, N.Q., Jeevaretanam, B., Enayati, S., Tsao, T.C., Spearrin, R.M. (2022). Cycle-resolved emissions analysis of polyfuel reciprocating engines via in-situ laser absorption spectroscopy. *Proceedings of the* ASME 2022 ICE Forward Conference. https://doi.org/10.1115/ICEF2022-88543
- [4] Schwarm, K., Nair, A.P., Wei, C., Spearrin, R.M., Ozen, E. Gonzalez, E., Kriesel, J. (2022). Three-dimensional real-time mapping of CO and CO₂ concentrations in active forest burns with a UAV Spectrometer. In AIAA SciTech 2022 Forum. https://doi.org/10.2514/6.2022-2291
- [5] Wei, C., Schwarm, K.K., Pineda, D.I., Spearrin, R.M. (2021). Learning network for laser absorption imaging in flames using mid-fidelity simulations. In *Computational Optical Sensing and Imaging, CTh5A.6.* https://doi.org/10.1364/COSI.2021.CTh5A.6
- [6] Wei, C., Schwarm, K.K., Pineda, D.I., Spearrin, R.M. (2021). Physics-trained neural network for sparse-view volumetric laser absorption imaging of species and temperature in reacting flows. *Optics Express 29(4), 22553-22566.* https://doi.org/10.1364/OE.427730
- [7] Li, J., Schwarm. K.K., Wei, C., Spearrin, R.M. (2021). Robust cepstral analysis at variable wavelength scan depth for narrowband tunable laser absorption spectroscopy. *Measurement Science and Technology 32(4)*, 045502. https://doi.org/10.1088/1361-6501/abcd6a
- [8] Wei, C., Schwarm, K.K., Pineda, D.I., Spearrin, R.M. (2021). Volumetric laser absorption imaging of temperature, CO and CO₂ in laminar flames using 3D masked Tikhonov regularization. *Combustion and Flame 224, 239-247.* https://doi.org/10.1016/j.combustflame.2020.10.031

- [9] Sanders, I.C., Bendana, F.A., Stacy, N., Schwarm, K.K., Spearrin, R.M. (2021). Swirl injection in hybrid polymethylmethacrylate combustion assessed by thermochemical imaging. In AIAA Propulsion and Energy 2021 Forum, 3513. https://doi.org/10.2514/6.2021-3513
- [10] Li, J., Nair, A.P., Schwarm, K.K., Pineda, D.I., Spearrin, R.M. (2020). Temperature-dependent line mixing in the R-branch of the v₃ band of methane. *Journal of Quantitative Spectroscopy and Radiative Transfer 255, 107271.* https://doi.org/10.1016/j.jqsrt.2020.107271
- [11] Wei, C., Schwarm, K.K., Pineda, D.I., Spearrin, R.M. (2020). 3D laser absorption imaging of combustion gases assisted by deep learning. In *Laser Applications to Chemical, Security, and Environmental Analysis, LTh5F.1.* https://doi.org/10.1364/LACSEA.2020.LTh5F.1
- [12] Mehta, Y., Razavian, S., Schwarm, K., Spearrin, R.M., Babakhani, A. (2020). Terahertz gas-phase spectroscopy of CO using a silicon-based picosecond impulse radiator. In *Conference on Lasers and Electro-Optics, SM2F.7.* https://doi.org/10.1364/CLEO_SI.2020.SM2F.7
- [13] Wei, C., Schwarm, K.K., Pineda, D.I., Spearrin, R.M. (2020). Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows. *Optics Letters* 45(8), 2447-2450. https://doi.org/10.1364/OL.391834
- [14] Schwarm, K.K., Strand, C.L., Miller, V.A., Spearrin, R.M. (2020). Calibration-free breath acetone sensor with interference correction based on wavelength modulation spectroscopy near 8.2 μm. Applied Physics B 126(1), 9. https://doi.org/10.1007/s00340-019-7358-x
- [15] Pineda, D.I., Bendana, F.A., Schwarm, K.K., Spearrin, R.M. (2019). Multi-isotopologue laser absorption spectroscopy of carbon monoxide for high-temperature chemical kinetic studies of fuel mixtures. *Combustion and Flame 207, 379-390.* https://doi.org/10.1016/j.combustflame.2019.05.030
- [16] Schwarm, K.K., Wei, C., Pineda, D.I., Spearrin, R.M. (2019). Time-resolved laser absorption imaging of ethane at 2 kHz in unsteady partially premixed flames. *Applied Optics* 58(21), 5656-5662. https://doi.org/10.1364/AO.58.005656
- [17] Schwarm, K.K., Dinh, H.Q., Goldenstein, C.S., Pineda, D.I., Spearrin, R.M. (2019). High-pressure and hightemperature gas cell for absorption spectroscopy studies at wavelengths up to 8 μm. *Journal of Quantitative Spectroscopy and Radiative Transfer 227, 145-151.* https://doi.org/10.1016/j.jqsrt.2019.01.029