

Detector Coatings for UV Imaging and Spectroscopy

April Jewell, John Hennessy, Robin Rodríguez, and Shouleh Nikzad

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Antireflection Coatings

Specified wavelengths or bands for targeted applications

Coating Techniques for Spectroscopy Applications

The index of refraction of Si is highly variable in

Device-Integrated UV Bandpass Filters

High UV throughput combined with out-of-band suppression, solar-blind UV detector with visible light rejection ratios >10³

Tailorable bandpass selection

Eliminates the need for a separate filter element (T=30-40% for commercial UV filters)

Block Pattern – Prototype

- Four regions each with a unique AR coating
- The contrast/sensitivity of the individual AR coated regions varies as a function of wavelength
- The edges of the patterned regions look sharp/well-defined

New Technology Report Number 52422; July 20, 2022

Recent Deliveries – SPARCS

Star-Planet Activity Research CubeSat

- NASA/APRA funded CubeSat, PI Evgenya Shkolnik (ASU)
- In October, JPL delivered SPARCam: two UV detectors optimized for SPARCS near UV (NUV) and far UV (FUV) bandpasses, along with readout electroncis
 - NUV Channel: delta-doped detector with AR coating; commercial UV bandpass filter (Materion)
 - FUV Channel: delta-doped detector with device-integrated UV bandpass filter (JPL)

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

2024 © California Institute of Technology. Government sponsorship acknowledged.

x (cm)

Measured thickness of a graded ALD AlF₃ coating (dashed line is 4x4 cm target area for UVEX detectors)

Coatings for Reflective Optics

- ALD MgF₂ has been used as an encapsulation layer for eLiF/Al mirror coatings
 - Recently implemented on optics for the SPRITE CubeSat and Aspera SmallSat missions
- ALD can also be used to deposit LiF, test samples meet the LUVOIR absolute reflectance requirements
- Provides an alternative coating route to conventional methods with relevance to HWO should uniformity requirements prove difficult to meet
- The use of atomic layer etching (ALE) allows independent optimization of the Al mirror coating and the fluoride protection layer
- ALD fluoride processes are being investigated at the meter-class via collaboration with UC Santa Cruz

0.054 %

Custom JPL tool for ALD and Al evaporation in the same vacuum chamber

SPRITE CubeSat primary mirror 16 x 18 x 5 cm in the JPL ALD chamber