Report on Mind the Gap Session - Stephan McCandliss

Report on Mind the Gap & **UVSTIG** Joint Splinter Sessions at AAS 243 New Orleans **Raison d'etre:**

There will be a 10-20 year gap between the end of the Hubble Space Telescope (HST) mission and the beginning of a new flagship mission with ultraviolet spectroscopic capabilities.

In the interim, what science should potential small- and modest-sized missions focus on as precursor efforts that advance conceptual and technical readiness and foster core-excellence in early career scientists who will go on to be mainstream uses of future flagship missions?

Three Sessions: Science, Technology and Mission in Development

Archives: https://cor.gsfc.nasa.gov/copag/meetings/AAS_Jan2024/A AS2024-Agenda-MineTheGap-AM.php

Presenters	Mind the Gap Committee	UVSTIG Leadership
Ted Gull – GSFC	Joy Nichols - Harvard & Smithsonian CfA	Stephan McCandliss - JHU
Jeff Linsky - CU	Carol Grady - Eureka Scientific	Jason Tumlinson - STScI
Andrea Dupree - CFA	Ted Gull - NASA/GSFC (Emeritus) & STScl	Sarah Tuttle - University of Washington
Geraldine Peters -USC	Erika Hamden - University of Arizona	Camden Ertley - SWRI
Linda Smith - STScI	Keri Hoadley - University of Iowa	Derek Buzasi - Florida Gulf Coast University
John Hennessy - JPL	Al Holm - Retired; STSci Operations	Kevin France - CU, Boulder
April Jewell - JPL	Geraldine Peters - USC	Allison Youngblood - GSFC
Chaz Shapiro - JPL	Paul Scowen - GSFC/NASA	John Hennessy - JPL
John Vallerga – UCB/SSL	Chris Shrader - GSFC NASA	Erika Hamden - University of Arizona
Keri Hoadly - Ulowa	Sarah Tuttle - University of Washington	Emily Witt - CU, Boulder
Manuel Quijada - GSFC		Keri Hoadley - University of Iowa, Iowa City
Sarah Tuttle - UWash		Shouleh Nikzad - JPL
Kevin France - CU		Jason McPhate - UCBerkeley
Alexandre David-Uraz - GSFC/HowardU		
Shouleh Nikzad - JPL		
David Ardilla (for Shkolnik) — JPL/ASU		
Paul Scowen - GSFC		
Emily Witt - CU		

Ted Gull

UV spectroscopy requires a selection of spectral resolving powers combined with excellent angular resolution:

The capability of HST/STIS must be built upon for the HWO

UV spectroscopy needs intermediate steps to get there

A spectrum is worth a thousand pictures ---- Blair Savage

A spectro-image is worth a thousand spectra!

Jeffrey L. Linsky

Science topics requiring highresolution UV spectroscopy

Science Topic	Need R>50,000 (6 km/s)	Nee
ISM kinematics and structure		
Stellar emission line fluxes	X	
Stellar dynamics (flows, winds, flares)		
Stellar accretion phenomena	X	
Exoplanet mass loss	X	

Capella observed with GHRS Ech-A (Linsky et al. 1993)

Andrea Dupree

No UV? What will we lose from stellar astrophysics ???

Measures atoms (H I, D I, He I, O I ...), ions (He II, Mg II, C III, O VI...), molecules (H_2) ...,

Spans temperatures from 10² - 10⁶ K... found in stars, exoplanets, and the ISM Winds from Young Accreting Stars

us in many ion species

Exoplanets: Transmission spectroscopy of escaping material

Lyman-alpha: escaping hydrogen HD 209458b (Vidal-Madjar+ 2003)

6

Gerrie Peters New Perspectives on Stellar Evolution in the Upper Main Sequence

- The degree of mass loss to the ISM by late O/Early B-type interacting binaries is important for galactic evolution studies.
- A FUV/NUV spectropolarimeter with moderate/high spectral resolution can determine the degree of systemic mass and angular momentum loss to calculate evolutionary tracks of close binaries.
- For star cluster evolution the most important number is how many *close binaries are formed.*

What is Needed Next to Compute Realistic Evolutionary Tracks for OB Interacting Binaries?

- State of the art: See Gotberg, et al. 2018, A&A, 615, A78 and references therein.
- There is a need for observations to constrain non-conservative calculations of evolutionary tracks.
- These observations must be in the FUV.

The fraction of O-Early B stars in a star cluster that have their evolutionary tracks modified depends on how many close binaries are formed. Their initial separations (may be modified by third body interactions) must be approximately less than 20 AUs (r/a ~log q). Wide binaries will undergo single star evolution.

Evidence for Mass Loss to the ISM by Be + sdO Systems and Other Be Binaries*

80600 a

φ Per

HR 2142 (V696 Mon)

(*right*) CX Dra (Algol-type, B2.5V + F5III, P= 6.696 d) (*left*) π Aqr (well-studied Be star)

nd references therein. tive calculations of evolutionary tracks.

*IR images from WISE Spacecraft (Mayer et al. 2016, A&A 587, A30)

48000 au

Linda Smith **Spectroscopy of Massive Stars** in the Nearby Universe: Lessons from ULLYSES for HWO

- ULLYSES = Ultraviolet Legacy • Library of Young Stars as Essential **Standards**
- **Director's Discretionary Hubble** program to obtain a spectroscopic reference sample of young low and high mass stars – Largest HST program ever executed (~1000 orbits)
- Designed by community lacksquare
- Multi-object UV spectroscopy with lacksquareHWO needed beyond the Milky Way and Magellanic Clouds to build a statistical sample of low Z OB stars

Alexandre David-Uraz Star Wind Variability in the Ultraviolet

- The name of the game... ... is time-domain.
- To probe the multi-scale spatial and temporal properties of massive star winds, we must develop an agile suite of observing tools that can deliver *precision*, short *cadence*, and a long temporal baseline.

Mind the gap

Tech Presentations

John Hennessy	UV Mirror and Detector Coatings by Atomic Layer Processing
April Jewell	Detectors for UV/Visible Spectroscopy
John Vallerga	Latest developments of MCP detectors at Berkeley
Keri Hoadly	Advances in Diffraction Grating Fabrication for Space-UV Astrophysics
Manuel Quijada	Emerging Coating Technologies for Realizing High-Reflectance and Stable Mirror Coatings for Observations in the FarUV
Sarah Tuttle	UV Technology White Paper: Getting Ready for HWO

material removed

the for AIF3 > Each AlgO

HF-based metal fluoride ALD processes

ALD encapsulation of PVD mirror coatings for improved

stability

- Test coatings fabricated for the SPRITE (PI: Brian Fleming, CU) program demonstrated ALD MgF₂ encapsulation on GSFC eLiF process
- The SPRITE CubeSat primary mirror 18 x 18 x 5 cm is largest optic coated to-date in this chamber. The same coating is being implemented on Aspera-Pioneers (PI: Carlos Vargas, UA)

jpl.nasa.gov

Summary and Next Steps

- Successfully demonstrated butcher block style AR coatings on two prototype detectors.
- Response behavior would be ideal for spectroscopy applications where each region of the detector would be optimized to match the spectral dispersion
- Explore region separation/overlap limits and "gap penalty" Improve deposition methods to eliminate cosmetic defects Environmental/stability studies
- Implementation with UV bandpass filters (ref. John Hennessy's presentation)

Hennessy et al., Proc. SPIE 10639 (2018) 106391P Jewel et al., SPIE Optics + Photonics 12678, San Diago, CA, August 2023

Timepix 4 – Advantages

Mission Presentations

Charz Shapiro	CASTOR – Cosmological Advanced Survey Telescope for Optical and uv Research	 a) 1003 kg spacerats and 10 Gbps optimal downlink b) 4002 Co-mail-SAT bus b) 500 km polar 580 for eff dant sures ps c) Dichroic segaration of relaxabandi s c) Optical coatings on all mitrors for red leak control Minimum 6 year mission (Sed 10 years) C) Observe programs (25%), Targel-01 Opportunity, programs (25%), and oillaforms time (5%). f 4 candidate Legacy Sures gad vances to 5844 d) drug F mas 0 		
Kevin FranceESCAPE – Euv Stellar Characterization for Atmospheric Physics and Evolution		To be re visited once the partnership is finalized and which would be Canada Strat many use gabe astronomy mission. Canadian Astronomy Long-Range Plan 2020 SPARCS Baseline Design SpecificA7707 NUV & FUV		
Shouleh Nikzad / Evgenya Shkolnik	SPARCS CubeSat - NUV & FUV photometry of 20 low-mass stars, young and old.	Photometry of 20 low-mass stars, young and old. Mentanza de une version structure to extra transmission of the former structure to extra transmission of the fo		
David Ardilla /UV-Scope - Science Drivers & SpectroscopicEvgenya ShkolnikCapabilities for (MIDEX Concept)		Polstar Science – The Role of Rapid Rotation in the Evolution of Massive Stars and the Galaxy		
Paul Scowen	POLSTAR - FUV Spectropolarimetry Mission (SMEX)	 Matche stars are the most important contributors to gelectic contributors. They have out their enter loss and go supernova whele how mass stars are still forming. Maise stars draft whe cology of at an formation through the Baryonic Cycle. A host of theories predict profound, yes different, consequences for rapid rotation in these stars, so observational constitutions are now assemblic application in the stars, so Politars will use UV spectropolarimetry to capitalize on a share starting and wind application in theory of the stars. 		
Keri Hoadly / Allison Youngblood	SNOUT - SmallSat for EUV stellar flare effects on exoplanets	 the evolution of the star and its impact on the Galaxy. Maxies stars are very bight, mostly in the UV, providing a sample size of about a hundred suitable targets, so we can space all ol of thise on each one, meaning a large aperture is not required. Potter will provide an evolve window, a new capability to view the Universe with. 		
Emily Witt	Efficient Spectral Multiplexing for Habitable Worlds Observatory - INFUSE: First FUV IFS Flown	INFUSE: First FUV IFS Flown		

CASTOR Mission Overview

9

Light-weighted Zerodur 1m primary mirror
 Three Mirror Anastig mat with 0.25 deg² FoV

a Active M2 for WFE compensation Fine steering mirror for image stabiliz

Sille

SNOUT: A SmallSat UV + Optical Telescope

	Channel Name	Bandpass (nm)	Visible EUV relescope (separate Mirror pi	r Channel)
	EUV1	16-21		EUV Telescope CCD Image
	EUV2	24-29		the second se
	EUV3	30-31		EUV3 EUV2
	Visible	400-900	E	
EU 38 (Alfi Visi diar Ser	/ Telescope: cm diameter v bil filter ble Telescop meter nsors: Teledyn	OAP, segmente with high-heritag e: OAP, 7.5 cm ne e2v CCD 47-2	Alfie for Vide/(UV Record april of form Large	195 Focused segret mages Total times 1024 cristin 113 ment
	TOW	A MindtheGa	/STIG AAS 243 Splinter Session, 01/09/2	023 7