CURRENT GROUND-BASED DETECTORS

And their likely evolution to 2040

Lucy M Thomas LIGO Lab, Caltech

Imthomas@caltech.edu

Lucy M Thomas, Imthomas@caltech.edu

GstLAL Inspiral Detector Range History (Mpc)

- ALIGO detectors: dual-recycled Michelson interferometers, 4km arms, 40kg test masses, with frequency-dependent squeezing
- AdVirgo: 2km arms
- Most downtime aligned to maximise 3detector uptime
- KAGRA: underground for lower seismic noise, cryogenic
- GEO600: used for developing and testing, and Astrowatch

Lucy M Thomas, Imthomas@caltech.edu

Lucy M Thomas, Imthomas@caltech.edu

2 MON ME **WHERE ARE**

- GWTC-3: 90 confident detections
- Majority BBH mergers
- ~ a few BNS mergers, notably GW170817
- ~ five NSBH mergers, notably GW200105 and GW200115
- Some systems with masses between 3 and 5 M_{\odot} , GW190814 and GW230529

Lucy M Thomas, Imthomas@caltech.edu

Observing plans

Lucy M Thomas, Imthomas@caltech.edu

INTO THE NEXT DECADE: A#

A bridge between A+ and nextgeneration ground-based instruments, and a testing ground for new technologies. See also: Virgo_nEXT

Lucy M Thomas, Imthomas@caltech.edu

LOW FREQUENCIES

- 100kg optics on upgraded suspensions
- Use suspension fibres at higher stress

MID FREQUENCIES

• Improve coatings for lower thermal noise

HIGH FREQUENCIES

- Increase circulating power to 1.5MW
- Increase squeezing up to

10dB

Lucy M Thomas, Imthomas@caltech.edu

- BNS and NSBH rate in A# more than 4 times that of A+
- Even with A+ coatings, A# still doubles BNS and NSBH rates
- BBH rate is almost 3 times with A# compared to A+

Configuration	Annual Detections				
Configuration	BNS	NSBH	BBH		
A+	135^{+172}_{-78}	24^{+34}_{-16}	740^{+940}_{-420}		
A^{\sharp}	630^{+790}_{-350}	100^{+128}_{-58}	2100^{+2600}_{-1100}		
$\mathrm{A}^{\sharp} \; (\mathrm{A}+ \mathrm{coatings})$	260^{+320}_{-140}	45_{-27}^{+60}	1150^{+1450}_{-640}		
A^{\sharp} Wideband (A+ coatings)	200_{-110}^{+250}	40^{+54}_{-25}	970^{+1220}_{-540}		

Lucy M Thomas, Imthomas@caltech.edu

- A+ will be able to see
 GW190521-like binaries
 out to z=3, and A# out to
 z=5
- Could see ten times heavier GW190521 at the same redshift

	Range [Mpc]				Post-Merger		
Configuration	BNS	BBH	$t_{\rm early}[\min]$	z_{\max}	$ ho_{ m pm}^{(10)}$	$ ho_{ m pm}^{(m max)}$	
O3 LLO	130	1200	0.3	1.3	0.4	0.6	
July 2022 LLO	120	1200	0.5	1.5	0.3	0.5	
A+	350	2600	2.7	3.2	1.4	2.0	
$\mathrm{A+}\ \mathrm{Wideband}$	290	2300	3.7	3.5	2.2	2.6	
A^{\sharp}	600	3700	6.2	5.4	2.7	3.7	
$\mathrm{A}^{\sharp} \; (\mathrm{A} + \mathrm{coatings})$	440	3000	6.1	4.6	2.7	3.4	
A [♯] Wideband	490	3300	6.8	5.5	4.8	5.6	

• BNS range around 4 times further than current

• Low frequency sensitivity improvements lead to BNS early warning of six minutes

11

- High frequency improvements make BNS postmerger detections a tantalising possibility
- Can infer tidal parameter significantly better

NS SCIENCE

Lucy M Thomas, Imthomas@caltech.edu

 If not already detected by O5, any post-O5 upgrade will allow for the detection of an unresolved background of binary mergers

Lucy M Thomas, Imthomas@caltech.edu

MIT/Caltech/LIGO Lab/Kim Burtnyk

SUMMARY

- There have been huge sensitivity improvements since O1, and correspondingly many more detections
- A+ is only three years away, an A# in the early 2030s will provide significant science benefits through improved coatings, suspensions, larger test masses and higher laser power
- Upgrades will lead to many more detections, including heavier BBHs, better NS constraints and an unresolved background of merging binarie

THANK YOU!

Lucy M Thomas, Imthomas@caltech.edu 10 Years to LISA, JPL, 1st April 2025