Pulsar Timing Arrays: The Observation Era

Patrick Meyers, Caltech and NANOGrav 10 years to LISA April 1st, 2025

- GWs change the arrival time of pulses
- Those changes are **correlated across pulsars**
- Target **persistent**, **stochastic** signals, like due to unresolved SMBHB mergers
 - Plenty of other possible explanations

Caltech Credit: Joeri van Leeuwen

Pulsar Timing

NANOGrav 15 yr dataset results

NANOGrav 2023, <u>ApJL, 951:L8</u>

Prediction

"Hellings and Downs Curve"

)ata

NANOGrav 2023, <u>ApJL, 951:L8</u>

Caltech

Recovered spectrum

Lovell

Arecibo

VLA

CHIME

LYIU

Credit: H. T. Cromartie

Calte

What are we targeting long term?

- Identifying source of GWB
- Improved constraints on SMBHB population
- Signals from individual SMBHB systems (GW and EM)
- Constraints on new physics, tests of general relativity
- Pulsar masses, nuclear physics
- IISM physics

• Chromatic noise: noise that is different at different radio frequencies

Caltech

Relativ

• Chromatic noise: noise that is different at different radio frequencies

How do we optimize a PTA?

Signal-to-noise for correlations

Number of pulsars

Observatories of the future

Credit: H. T. Cromartie

NANOGrav: 20 yrs, 77 pulsars IPTA: 121 pulsars, 25 yrs

CPTa

PPTa

DSA-2000

- Survey telescope, 2000 5m dishes, 0.7-2 GHz
- ~25% of its time dedicated to PTAs, **Could** monitor 200 pulsars monthly
- Estimated 22,000 new pulsars (not necessarily millisecond pulsars)

Square Kilometer Array

- SKA-mid will be 197 separate 13.5 m dishes, 0.35 15 GHz
 - Central core (~1km across) + 3 spiral arms extending out $\mathcal{O}(100 \text{ km})$
 - 5 ns timing precision
- SKA-low 131,072 antennae, 74km baseline, 512 stations, 5 - 350 MHz
 - 10 ns timing precision

ngVLA

- First light, late 2030's
- Interferometric instrument with 18m dishes (244), and
 6m dishes (19)
 - 1.2 116 GHz bridge gap between SKA1 and ALMA
 - Core array + extensions to 1000 km
- Higher frequencies + larger bandwidth = easier to deal with scattering/dispersion

Modeling improvements, PTA optimization

- 115 pulsars (IPTA-like) + 2 pulsars per year.
- Sky location, noise properties similar to NANOGrav 15 yr dataset.

- Dropping pulsars from the array in favor of timing some pulsars more frequently
 - Enhances single-source sensitivity at high frequency!

Caltech

Baier+2024, 2409.00336

Projections for single source detection

- Realistic populations of SMBHBs based on amplitude of NANOGrav results.
- ~50% probability of a detectable continuous wave in the 15 yr dataset
 - Limited ability to constrain parameters
- Projecting when a detection could be made is difficult.
 - Need to combine this work with work of Baier for realistic simulations + detection probability projections

 $\log_{10} h_0$ $\log_{10} \mathcal{M}_{o}$ $^{9.0}$ $\sqrt[]{89}{8}$ 0.4 $A_{\rm GWB}$)/GWE 0.1500.1250.1000.200.075 0.150.050 0.025 0.0525 20 0 10 20 **Detection Status** S/N_{Λ} Failure Success

Gardiner+2025, arXiv:2502.16016

Host Identification

- If a CW detection is made, the goal would be to identify the host galaxy
- Petrov+2024 (arXiv: 2406.04409) build a realistic pipeline for follow up using galaxy catalogues to make mass/distance cuts.

Improved methods

- Direct astrophysical inference from population synthesis using Normalizing Flows
- More complex noise models (of all kinds)
- Detailed model checking
- Hierarchical modelling for noise
- Being made possible by software and modeling improvements

https://github.com/NimaLaal/pandora

https://github.com/nanograv/discovery

PTAs into the future

- There's a fairly clear roadmap, in some ways:
 - More sensitive observatories
 - optimize observing

• Continue to take more data, find new, quiet pulsars and

• Leverage software and hardware improvements to include more complete noise models, potentially end-to-end analyses

