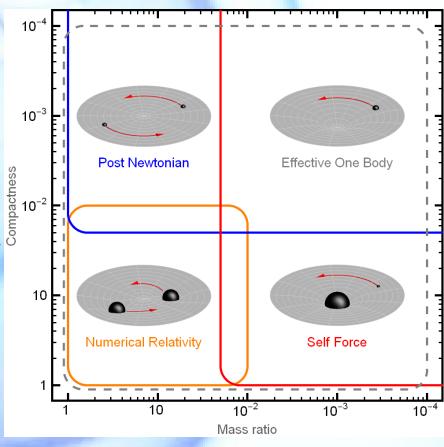
The status of black hole binary waveform modeling and the requirements for LISA

Sean McWilliams
West Virginia University


10 Years to LISA
JPL, Pasadena, CA
April 2, 2025

Modeling comparable masses

- NR hybrid surrogates attach PN to NR and interpolate.
 - Pro: potentially as accurate as NR
 - Cons: NR isn't accurate enough for LISA, interpolation has errors and can be slow.
- built on PN, calibrate to NR and self force.

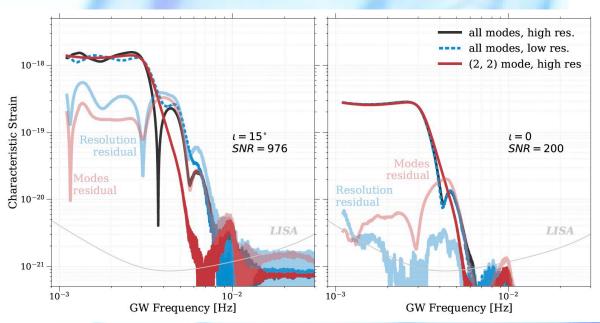
 Pro: can leverage all other EOB-based models (SEOBNR, TEOB) are
 - approaches
 - Cons: less accurate than NR, ODEs or interpolation can be slow
- Neither approach tells you why the signal looks how it does.

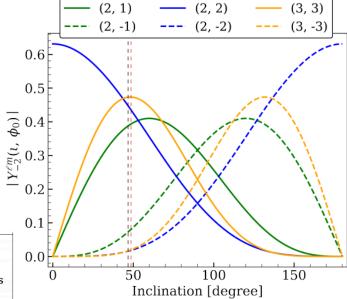
Based on e.g. Van de Meent and Pfeiffer PRL (2020)

PN State-of-the-art

			Dissipative flux						
PN order	non-spinning	spinning			non-spinning	spinning			
		SO	SS	higher spins		SO	SS	higher spins	
0	$\sqrt{}$	ı	ı	_	-	-	-	-	
1		1	-	_	-	-	-	-	
1.5	_		-	-	-	-	-	-	
2		-		-	-	-	-	-	
2.5		$\sqrt{}$	-	-		-	-	-	
3		1		-	-	-	-	-	
3.5			1	$\sqrt{(S^3)}$		-	-	-	
4		ı		$\sqrt{(S^4)}$			-	-	
4.5	*		ı	$\sqrt{(S^3)}$		-		-	
5	*	ı		$\sqrt{(S^4)}$			-	-	
5.5	*			$\sqrt{(S^5)}$				-	
6				$\sqrt{(S^6)}$				$\sqrt{(S^3)}$	
6.5				*					
7				*	\checkmark				

LISA WavWG WP (2023)

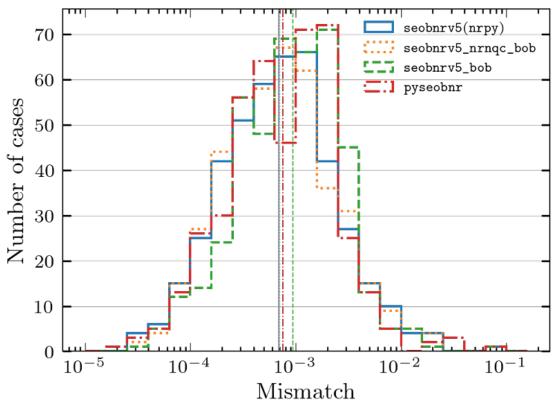



NID	Codoc	Open	Public	Formulation	Hydro	Beyond
INL	NR Codes		$\operatorname{catalog}$			GR
	AMSS-NCKU $[552, 613-615]$	Y	_	BSSN/Z4c	_	Y
	BAM [582, 616-618]	_	[524, 619, 620]	BSSN/Z4c	Y	_
	BAMPS $[621-623]$	_	_	GHG	\mathbf{Y}	_
	${\tt COFFEE}[624,625]$	Y	_	GCFE	_	Y
	Dendro-GR [626, 627]	Y	_	BSSN/CCZ4	_	Y
	Einstein Toolkit $[628, 629]$	Y	_	BSSN/Z4c	Y	Y
*Canuda [*Canuda [366, 367, 630]	Y	_	BSSN	_	Y
	*IllinoisGRMHD $\left[631\right]$	Y	_	BSSN	Y	_
	*LazEv $[515, 632]$	_	[633 - 636]	BSSN/CCZ4	_	_
	*Lean $[637, 638]$	Partially	_	BSSN	_	Y
	*MAYA [639]	_	[639]	BSSN	_	Y
	*NRPy+ [640]	Y	_	BSSN	Y	_
	*SphericalNR $\left[641,642\right]$	_	_	spherical BSSN	Y	_
	*Spritz [643, 644]	Y	_	BSSN	Y	_
	*THC [645-647]	Y	[619]	BSSN/Z4c	Y	_
	* WhiskyMHD $[648]$	_	[649]	BSSN	Y	_
	ExaHyPE $[650]$	Y	_	CCZ4	Y	_
	FIL[651]	_	_	BSSN/Z4c/CCZ4	Y	_
	GR-Athena++ $\left[652\right]$	Y	_	Z4c	Y	_
	${\tt GRChombo} \ [653655]$	Y	_	BSSN/CCZ4	_	Y
	HAD [656–658]	_	_	CCZ4	Y	Y
	Illinois GRMHD $\left[659,660 ight]$	_	_	BSSN	Y	_
	MANGA/NRPy+ [661]	Partially	_	BSSN	Y	_
	BH@H/NRPy+ [640, 662]	_	_	BSSN	_	_
	MHDuet [663-665]	Y	_	CCZ4	Y	Y
	SACRA [666-670]	_	[671]	BSSN/Z4c	Y	Y
	SACRA-SFS2D [672, 673]	_	_	BSSN/Z4c	Y	_
	SpEC [523, 674]	_	[521, 523, 675]	GHG	Y	Y
	SpECTRE [676, 677]	Y	_	GHG	Y	_
	SPHINCS_BSSN [678]		_	BSSN	SPH	_

Accuracy Requirements

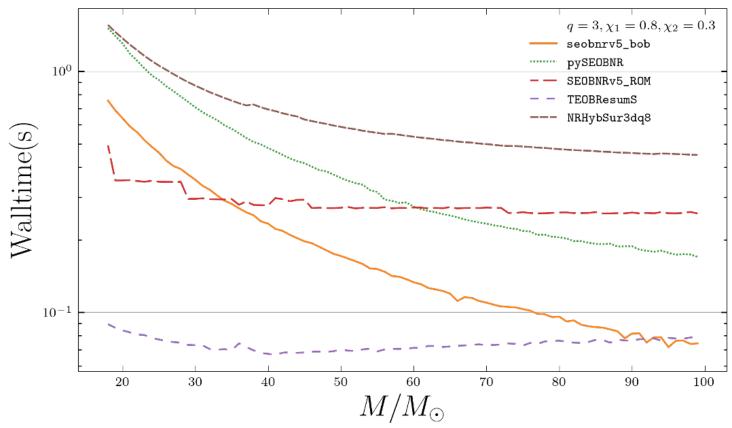
- Required accuracy depends on SNR and parameters.
- Most stringent for the loudest "golden" signals that will tell us the most about strong gravity

Puecher et al. (2022)

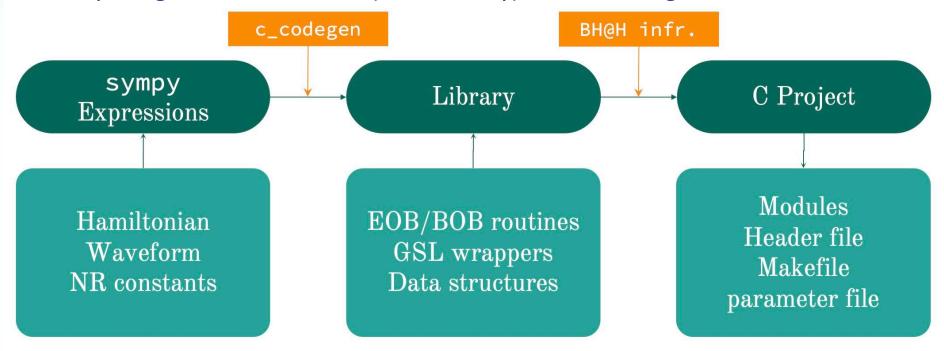

LISA WavWG WP (2023)

Accuracy Requirements

- LISA needs mismatches of 10⁻⁶ for inference on astro interpretation of individual sources, 10⁻⁷ for joint inference on MBHB population.
- 3-4 orders of magnitude away from where we need to be


 SEOBBOB uses 50% as many tuning dofs; by eliminating dofs during merger, can improve tests of GR or tune better to long inspirals.

Efficiency Requirements


- LISA needs WF generation in < 1 s on 1 CPU.
- ROMs+interpolation may be too slow.
- Post-adiabatic will be too inaccurate.
- We are evolving the full Hamiltonian as fast as ROMs using NRPy.

Efficiency Requirements

- NRPy takes in documented code in Python using sympy, outputs optimized C libraries.
- Easy integration with BH@H (also in NRPy) for calibrating to NR

https://github.com/nrpy/nrpy/

pip install nrpy
python -m
nrpy.examples.seobnrv5_aligned_spin_inspiral

