The Population of LISA MBHBs: What we have learned from simulations

Kunyang Li Marta Volonteri

Institut d'Astrophysique de Paris

Massive Black Holes

SgrA* (Milky Way): GRAVITY @ VLT

What we know:

- Inhabit the centres of nearby galaxies, including the Milky Way
- Mass $> 10^4 M_{\odot}$ up to $\sim 10^{10} M_{\odot}$
- Power Active Galactic Nuclei (AGN) and quasars when mass falls in

What we want to know:

- What's their origin?
- How do MBH grow in mass?
- How do MBHs pair and merge?

LISA observations will play a key role in addressing these questions.

Massive Black Holes & LISA's Discovery Space

Peeks into the "life journey" of MBHs:

• MBHs grow through MBH mergers and accretion

Massive Black Holes & LISA's Discovery Space

Peeks into the "life journey" of MBHs:

- MBHs grow through MBH mergers and accretion
- Mergers : as MBHs evolve, they sweep through the LISA band frequency

LISA makes observation of high-z and lighter MBHs possible

Massive Black Holes & LISA's Discovery Space

Peeks into the "life journey" of MBHs:

- MBHs grow through MBH mergers and accretion
- Mergers : as MBHs evolve, they sweep through the LISA band frequency
- Accretion : complementary EM observations

LISA makes observation of high-z and lighter MBHs possible

Peeks into the high-z "childhood" of MBHs: Intermediate-mass MBHs in low-z dwarfs:

MBH mergers: the journey of two MBHs

Courtesy of Hugo Pfister

Theoretical models pros and cons:

Empirical models

- Populate DM halos with galaxies and MBHs
- Ensemble population information compared to (many!) observables to find how population evolves

Haehnelt 94; Padmanabhan & Loeb 20; Zhang + 22; Soltan 1982; Small & Blandford 1992; Cavaliere & Vittorini 2000; Yu & Tremaine 2002; Steed & Weinberg 2003; Marconi et al. 2004; Yu & Lu 2004; Merloni & Heinz 2008; Shankar et al. 2009, 2013; Aversa et al. 2015; Tucci & Volonteri 2017; Conroy & White 2013; Caplar et al. 2015, 2018; Yang et al. 2018; Comparat et al. 2019; Geor- gakakis et al. 2019; Carraro et al. 2020; Shankar et al. 2020a,b; Al- levato et al. 2021, etc etc.

Semi-analytical models

- Make simplified assumptions of baryonic structures evolution in DM halos merger trees assuming analytical expression for evolution
- Fast, cover large parameter space, & able to statistically explore how different physical assumptions affect the global population while losing some self-consistency
- Lack spatial information, can only use simplified analytical functions

Begelman +1980; Izquierdo-Villalba+20; Dayal+19; Trinca+22; Sesana+ 05,11a; Fanidakis+11; Volonteri+03a, 05; Haiman +04; Tanaka & Haiman 09; Enoki +05; Tamanini +16; Croton+06; Lodato & Natarajan 06; Somerville+08; Volonteri +08b; Volonteri & Natarajan 09; Kauffman & Haehnelt +00, Hopkins & Quataert +10; Barausse +12, 20b; Miller & Krolik 13; Bonoli +14; Menci +14; Gatti +15; Gerosa +15b, 20; Klein +16; Ricarte & Natarajan 18a, b; Bonetti +19,21; Inayoshi +19; DeGraf + 20; K.Li +20a, 22; Kauffmann & Haehnelt 20; Marulli + 08; Shirakata + 19; Sayeb +20; Katz +20; Barausse +20b; Valiante +21; etc etc

Theoretical models pros and cons:

Empirical models

Difficulty: extremely wide range of scales that need to be resolved simultaneously

- Populate DM halos with galaxies and MBHs
- Ensemble population information compared to (many!) observables to find how population evolves

Haehnelt 94; Padmanabhan & Loeb 20; Zhang + 22; Soltan 1982; Small & Blandford 1992; Cavaliere & Vittorini 2000; Yu & Tremaine 2002; Steed & Weinberg 2003; Marconi et al. 2004; Yu & Lu 2004; Merloni & Heinz 2008; Shankar et al. 2009, 2013; Aversa et al. 2015; Tucci & Volonteri 2017; Conroy & White 2013; Caplar et al. 2015, 2018; Yang et al. 2018; Comparat et al. 2019; Georgakakis et al. 2019; Carraro et al. 2020; Shankar et al. 2020a,b; Allevato et al. 2021, etc etc.

Semi-analytical models

- Make simplified assumptions of baryonic structures evolution in DM halos merger trees assuming analytical expression for evolution
- Fast, cover large parameter space, & able to statistically explore how different physical assumptions affect the global population while losing some self-consistency
- Lack spatial information, can only use simplified analytical functions

Begelman +1980; Izquierdo-Villalba+20; Dayal+19; Trinca+22; Sesana+ 05,11a; Fanidakis+11; Volonteri+03a, 05; Haiman +04; Tanaka & Haiman 09; Enoki +05; Tamanini +16; Croton+06; Lodato & Natarajan 06; Somerville+08; Volonteri +08b; Volonteri & Natarajan 09; Kauffman & Haehnelt +00, Hopkins & Quataert +10; Barausse +12, 20b; Miller & Krolik 13; Bonoli +14; Menci +14; Gatti +15; Gerosa +15b, 20; Klein +16; Ricarte & Natarajan 18a, b; Bonetti +19,21; Inayoshi +19; DeGraf + 20; K.Li +20a, 22; Kauffmann & Haehnelt 20; Marulli + 08; Shirakata + 19; Sayeb +20; Katz +20; Barausse +20b; Valiante +21; etc etc

Theoretical models pros and cons:

Empirical models

Difficulty: extremely wide range of scales that need to be resolved simultaneously

Semi-analytical models

Numerical simulations

- Evolve the full hydrodynamics of the DM and baryonic structures simultaneously in a self-consistent way (down to resolution).
- Naturally include spatial information and can reach a high-level of complexity
- High computational costs

Quinlan & Hernquist 97; Teyssier +02; Yu +02; Escala +05; Berczik +06; Dotti +07; Rezzolla +08; Cuadra +09a; Amaro-Seoane +10b; Lousto + 10; Khan +13; Dubois +14b, 15; 20, 21; Taylor & Kobayashi 14; Hirschmann +14; Gerosa +15a; Tremmel +15; Sesana +15; Sijacki +15; Springel +15; Schaye +15; Bonoli +16; Khan + 16; Volonteri +16; Salcido +16; Habouzit +17; Tremmel +17; Rantala +17; Kelley +17b; Bortolas +18, 20; ;Dunn +18; Ryu +18; Tremmel +18b; Fiacconi +18; Hopkins +18; Bellovary +19; Bustamante & Springel 19; Pfister +19; Pillepich +19; Davé +19; Cenci +20; Volonteri +20; DeGraf & Sijacki 20; Regan +20a; Chen +21; Sala +21; Zwick +21; Mannerkoski +23; Dong-Páez +23; Liao +24b;K. Li +24 etc etc

Theoretical models pros and cons:

Empirical models

Semi-analytical models

Numerical simulations

- Solve the full hydrodynamics of DM and baryonic structure evolution simultaneously in a self-consistent way
- Naturally include spatial information and can reach a high-level of complexity
- High computational costs

Quinlan & Hernquist 97; Teyssier +02; Yu +02; Escala +05; Berczik +06; Dotti +07; Rezzolla +08; Cuadra +09a; Amaro-Seoane +10b; Lousto + 10;Khan +13; Dubois +14b, 15; 20, 21; Taylor & Kobayashi 14; Hirschmann +14; Gerosa +15a; Tremmel +15; Sesana +15; Sijacki +15; Springel +15; Schaye +15; Bonoli +16; Khan + 16; Volonteri +16; Salcido +16; Habouzit +17; Tremmel +17; Rantala +17; Kelley +17b; Bortolas +18, 20; ;Dunn +18; Ryu +18; Tremmel +18b; Fiacconi +18; Hopkins +18; Bellovary +19; Bustamante & Springel 19; Pfister +19; Pillepich +19; Davé +19; Cenci +20; Volonteri +20; DeGraf & Sijacki 20; Regan +20a; Chen +21; Sala +21; Zwick +21; Mannerkoski +23; Dong-Páez +23; Liao +24b;K. Li +24 etc etc

Difficulty: extremely wide range of scales that need to be resolved simultaneously

- Trade-off due to limited computational resources
 You got to choose between:
 - Cosmological simulations with large volume/ many objects/ low resolution: massive galaxies
 - Cosmological zoom-in simulations with small volume/ few objects/ high resolution: dwarf galaxies

Come on, you got to pick just one!

Large volume

Box: 140 *Mpc*³ Resolution: 1 *kpc* (HorizonAGN Dubois +14)

High resolution

Box: 15 *Mpc*³ Resolution: 30 *pc* (Obelisk Trebitsch +21)

Trebitsch+21

Limited computational resources

You got to choose between:

- Cosmological simulations with large volume/ many objects/ low resolution: massive galaxies
- Zoom-in simulations with small volume/ few objects/ high resolution: dwarf galaxies

Resolution as the bottleneck:

Credit: Monica Colpi

Dynamics & MBH Mergers

KETJU (e.g., Mannerkoski+19,20,21,23;)

The main idea in KETJU is to add small spherical regions centred on the MBHs, where the dynamics are integrated using a high-accuracy integrator

Tracks the interaction with stars to high-level accuracy

- Dynamical friction and hardening of MBHB from interactions with stellar particles are directly captured.
- Post-Newtonian dynamics of MBHBs, such as orbital decay from GW emission and precession of the orbit.

RAMCOAL (Li, Volonteri+24)

A sub-grid model integrated in adaptive mesh refinement code RAMSES:

Track the orbit of MBHB to coalescence in galaxy simulation on-the-fly

Highly complementary

RAMSES

Brings MBHs to resolution limit

simulates the orbital evolution of MBHBs to coalescence

- Dynamical friction: Gas, star, DM
- Radiation feedback effect on gas dynamical friction
- Loss-cone scattering
- Viscous drag in circumbinary disk
- GW emission
- Binary accretion & AGN feedback
- Spin evolution and recoils
- MBH triplets (coming soon!)

To realistic coalescence on the fly in simulations

RAMCOAL tracks the real-time evolution of MBHBs in hydrodynamical simulations within their environment in real time to avoid uncertainties in postprocessing

Simulating orbital evolution of MBHB to coalescence on-the-fly!

Example RAMCOAL simulation of galaxy merger at 100pc resolution:

The galaxy merger and coalescing trajectory of both MBHs on top of the gas (left) and stellar density (right).

Modelling MBH evolution

Quick overview: the <mark>formation</mark> of MBHs (aka, seeding/seeds), their <mark>early growth</mark>, their <mark>mergers</mark> which will be very important for LISA

Different Lifes of MBH Seeds: seeding mechanisms are still unconstrained

Туре	Origin Mass Frequency		Growth	
Small	Remnants of the first stars	~10-100 M _{sun}	Common ~ 0.1-10 Mpc ⁻³	Difficult
Medium	Mergers of stars or stellar BHs/Dynamical heating	~1e3-1e4 M _{sun}	Relatively common ~ 1e-5-0.01 Mpc ⁻³	Intermediate
Large	Supermassive stars/LW>1000 J _{crit}	~1e5-1e6 M _{sun}	Rare: <1e-5 Mpc ⁻³	Easy
Exotic	Primordial Black Holes	Unknown (< 1e6 M _{sun} ?)	CMB/XRB: <1e-3 Mpc ⁻³ for M>1e4 M _{sun}	Unknown

see MV, Habouzit, Colpi 2021 for a compact review and Regan& MV 2024 for an update

Different Lifes of MBH Seeds:

Key takeaways/points for discussion:

Туре	Origin	Mass	Frequency	Growth
Small	Remnants of the first stars	~10-100 M _{sun}	Common ~ 0.1-10 Mpc ⁻³	Difficult
Medium	Mergers of stars or stellar BHs/Dynamical heating	~1e3-1e4 M _{sun}	Relatively common ~ 1e-5-0.01 Mpc ⁻³	Intermediate
Large	Supermassive stars/LW>1000 J _{crit}	~1e5-1e6 M _{sun}	Rare: <1e-5 Mpc ⁻³	Easy
Exotic	Primordial Black Holes	Unknown (< 1e6 M _{sun} ?)	CMB/XRB: <1e-3 Mpc ⁻³ for M>1e4 M _{sun}	Unknown

see MV, Habouzit, Colpi 2021 for a compact review and Regan& MV 2024 for an update

Continuum

Different Lifes of MBH Seeds:

Key takeaways/points for discussion:

	Τ			F rom.com.co.		
	Туре	Origin	Mass	Frequency	Growth	Natural process
	Small	Remnants of the first stars	~10-100 M _{sun}	Common ~ 0.1-10 Mpc ⁻³	Difficult	Lots of BHs around Initial mass function? Able to grow?
	Medium	Mergers of stars or stellar BHs/Dynamical heating	~1e3-1e4 M _{sun}	Relatively common ~ 1e-5-0.01 Mpc ⁻³	Intermediate	
,	Large	Supermassive stars/LW>1000 J _{crit}	~1e5-1e6 M _{sun}	Rare: <1e-5 Mpc ⁻³	Easy	
	Exotic	Primordial Black Holes	Unknown (< 1e6 M _{sun} ?)	CMB/XRB: <1e-3 Mpc ⁻³ for M>1e4 M _{sun}	Unknown	

see MV, Habouzit, Colpi 2021 for a compact review and Regan& MV 2024 for an update

Different Lifes of MBH Seeds:

Continuum

Key takeaways/points for discussion:

	Туро	Origin	Mass	Frequency	Crowth	
	Small	Remnants of the first stars	~10-100 M _{sun}	Common ~ 0.1-10 Mpc ⁻³	Difficult	Natural process Lots of BHs around Initial mass function? Able to grow?
	Medium	Mergers of stars or stellar BHs/Dynamical heating	~1e3-1e4 M _{sun}	Relatively common ~ 1e-5-0.01 Mpc ⁻³	Intermediate	Natural process How common? Few explorations in the cosmological context.
,	Large	Supermassive stars/LW>1000 J _{crit}	~1e5-1e6 M _{sun}	Rare: <1e-5 Mpc ⁻³	Easy	
	Exotic	Primordial Black Holes	Unknown (< 1e6 M _{sun} ?)	CMB/XRB: <1e-3 Mpc ⁻³ for M>1e4 M _{sun}	Unknown	

see MV, Habouzit, Colpi 2021 for a compact review and Regan& MV 2024 for an update

D

 10° ${
m M}_{Halo}$: $3 imes 10^8~{
m M}_{\odot}$ 1000J Halo J_{LW}: 1000 J₂₁ Growth 10^{5} Difficult 10^{4} cm Density Intermediate 10^{3} 10² Number I Easy? The rare heaviest seeds formed in strong UV radiation sites sit in the center of an almost spherical gas 10^{1} distribution and have the highest Unknown masses at birth t = 140.5 Myrz = 23.6810 pc Regan& MV 2024 10^{0} in update

th Natural process. Lots of BHs around Initial mass

grow?

context.

function? Able to

Natural process.

Few explorations in

the cosmological

Natural process?

Enough BHs

around?

How common?

Erratic dynamics in shallow potential wells of high-z galaxies

IMBHs in high-z dwarf galaxies hard to sink via DF due to their messy, shallow, time-variable potentials:

IMBHs not growing

Erratic dynamics in shallow potential wells of high-z galaxies

IMBHs in high-z dwarf galaxies hard to sink via DF due to their messy, shallow, time-variable potentials:

IMBHs not growing

Nuclear star clusters at the rescue!

Stars stripped from one nucleus provide additional dynamical friction and speed up subsequent hardening ("Ouroboros Effect", Ogiya+20)

Nuclear star clusters at the rescue!

Nuclear star clusters at the rescue!

The tidal interaction triggered by 2 stellar clusters generates torque and accelerate the sinking of MBHs.

Summary:

- Rich LISA science with MBHBs and mergers
- LISA's MBHs expected (relatively) faint: $10^4 M_{\odot} \sim 10^7 M_{\odot}$ MBHs in $10^8 M_{\odot} \sim 10^{10} M_{\odot}$ galaxies out to z>>3
- LISA will put more constrains on MBH seeding mechanisms
- A focal point of simulations in the next decade will be to accurately model the assembly of galaxies including modelling the environments, in a cosmological context, in which different MBH seeds can form, and evolve under precise MBH dynamics.
- The use of high-resolution and relatively large-scale numerical simulations with MBH formation and small-scale dynamics prescriptions will be needed to break the current degeneracies between models.

Summary:

• Rich LISA science with MBHBs and mergers

- LISA's MBHs expected (relatively) faint: $10^4 M_{\odot} \sim 10^7 M_{\odot}$ MBHs in $10^8 M_{\odot} \sim 10^{10} M_{\odot}$ galaxies out to z>>3
- LISA will put more constrains on MBH seeding mechanisms
- A focal point of simulations in the next decade will be to accurately model the assembly of galaxies including modelling the environments, in a cosmological context, in which different MBH seeds can form, and evolve under precise MBH dynamics.
- The use of high-resolution and relatively large-scale numerical simulations with MBH formation and small-scale dynamics prescriptions will be needed to break the current degeneracies between models.

Extra slides

LISA & MBH seeds

Hear the "baby cries" of MBHs:

- Mechanisms predict different seed mass, time of formation, environment and abundance of MBH seeds
- Lighter seeds are more ubiquitous
- Heavier seeds are less abundant

*primordial black holes and cosmic string loops are set at arbitrary number densities

LISA & MBH seeds

M87

10¹⁰

108 -

Hear the "baby cries" of MBHs:

- Mechanisms predict different seed mass, time of formation, environment and abundance of MBH seeds
- They're not mutually exclusive!

*primordial black holes and cosmic string loops are set at arbitrary number densities

Dynamics & MBH Mergers

RAMCOAL (Li,Volonteri+24)

RAMCOAL

Track the orbit of MBHB to coalescence in simulation on-the-fly, a sub-grid model integrated in AMR code RAMSES

- Includes dynamical friction, stellar hardening, migration in circumbinary disc, GW emission, accretion and feedback on each MBH in the binary (in CBD as well), spin evolution and recoil.
- Uses local quantities to calculate local subgrid potential.
- negligible additional computational overhead (Fast!)
- Sub-grid model of stellar density makes it almost resolution-independent out to 100 pc resolution.