

Understanding Massive Black Hole Mergers:

Insights form the ASTRID / MAGICS Simulations and Implications for LISA Observations

Yihao Zhou

Advisor: Tiziana Di Matteo

McWilliams Center for Cosmology and Astrophysics

Carnegie Mellon University

People

Tiziana Di Matteo (CMU)

Rupert Croft (CMU)

Bonny Wang (Master; CMU)

William Chen (Undergrad; CMU)

Simeon Bird (UCR)

Nianyi Chen (Postdoc; IAS)

Diptajyoti Mukherjee (PhD; CMU)

ASTRID: the largest simulation ever

resolution

Mass

Baryon

Boxside: 370 Mpc Particle number: 2×5500^3 Softening length: $1.5h^{-1}$ kpc

recently arrive z = 0

ASTRID: from Cosmic Web to Massive Black Holes

Zhou et al. 2025 arXiv:2502.01845

remnant galaxy

 $\log M_{\rm gal} = 12.23$ $\log M_{\rm BH} = 10.34$

10 kpc

MBH merger population in Astrid

Over 3M mergers, covering a wide mass range: $10^5 - 10^{11} M_{\odot}$

merger population in ASTRID: wide mass range

Wide mass range: $10^5 - 10^{11} M_{\odot}$

merger population in ASTRID: wide mass range

MBH merger trajectory in ASTRID

dynamical friction model —> realistic MBH merging trajectory --> orbital eccentricity *e*

Chen et al. 2022 arxiv: 2112.08555

LISA detection rate

- LISA detection rate is **10.5 events/yr**
- Most detected sources: mergers with $M_{\rm BH} \sim 10^6 {\rm M}_{\odot}$ at z < 2

LISA detection rate

- LISA detection rate is **10.5 events/yr**
- Most detected sources: mergers with $M_{\rm BH} \sim 10^6 {\rm M}_{\odot}$ at z < 2

LISA detection rate: the enhancement from including *e*

Incorporating eccentricity enhances LISA detectability

Increasing the detected mass range from $10^8 M_{\odot}$ to $10^9 M_{\odot}$

LISA sources: low AGN fraction

Only a small fraction (13%) of LISA sources involves AGN activity

hardly likely to be **Dual AGNs**

Host galaxies: low-mass ($10^9 M_{\odot}$) and satellite galaxies

Host galaxies: high star formation rate

50% higher star formation rate

Having a tight correlation with the galaxy stellar mass $\log SFR = 0.9 \log M_{gal} - 8$

ASTRID Cosmological BHs and galaxies

ASTRID Cosmological BHs and galaxies

MAGICS simulation suite

SPH code: MP-Gadget

Regularized integrator :KETJU

FMM based collisional N-body code: TAICHI

higher resolution

Zhou et al. 2024 arxiv: 2409.19914

MAGICS: the important role of NSC around MBH

Seed MBH in nuclear stellar clusters (NSCs) rapidly sink to the galactic center and form hard binaries!

Mukherjee et al. 2024 arxiv: 2409.19095

Conclusion

From ASTRID

- Astrid hosts a large MBH merger population, covering a wide mass range of $10^5 10^{11} M_{\odot}$
- In Astrid, MBH mergers have realistic trajectories, enabling us to measure orbital eccentricity
- Incorporating orbital eccentricity enhances LISA detectability, especially at low-redshift and high-mass end
- Host galaxies of LISA sources typically have high star formation rate, and many of them are satellite galaxies.

From MAGICS

- MAGICS simulation suite traces the binary evolution down to sub-parsec scales.
- Embedding the seed MBH within NSC accelerates the orbital decay.

ASTRID-LISA

Prediction for LISA merger rate

Incorporating orbital eccentricity enhances the LISA detectability

- With circular orbits: **5.7/yr**, all merger sources
- with orbital eccentricity: **10.5/yr**, 48 % of them (4.8/yr) are inspiral sources

Evolution of orbital eccentricity

MAGICS ASTRID