Electromagnetic counterparts of massive black hole mergers

Zoltán Haiman Columbia University

ISTA

Collaborators:

Ágnes Kis-Tóth, Kevin Park, Chengcheng Xin, David O'Neill Ryan Westernacher-Schneider, Jordy Davelaar, Chris Tiede, Luke Krauth, Max Isi Maria Charisi, Daniel D'Orazio, Jonathan Zrake, Andrew MacFadyen, Will Farr, Zsolt Frei

"Ten Years to LISA"

JPL

1-3 April 2025

Massive BH binaries in galactic nuclei

→ GW sources at / close to merger (LISA/TianQin, Taiji/PTAs)

→ EM sources earlier on (time-domain surveys LSST, ULTRASAT, UVEX)

Arp 271 (credit: ESO)

Novel science from GW + EM detections

Astronomy & astrophysics quasar/galaxy (co)evolution accretion physics environments of merging black holes

Fundamental physics & cosmology geometric cosmological measurements novel tests of beyond-GR gravity graviton mass, extra dimensions

Practical benefits

EM counterpart can increase confidence of marginal GW detections known EM source location can help break GW parameter degeneracies

need to find EM counterparts or precursors of GW sources

Have we already detected SMBH binaries in both GW and EM ?

NANOGrav15 GWB

From quasars to GWB

Kis-Tóth, ZH & Frei (2025; arXiv:2412.12726)

- **Common approach:** predict GWB by modeling the cosmic population of SMBH mergers (sims, SAMs)
- Simplified approach: assume 1-1 correspondence between quasars and SMBH mergers

Kis-Tóth Eötvös Loránd Un<u>iv.</u>

Ágnes

luminosity function

Xin & ZH 2021; Kulkarni+2019

Gravitational waves

Agazie+2023; NANOGrav15 GW Frequency [yr⁻¹] 10⁻¹ 10⁻¹ 10⁻¹ Best-Fit SMBH Binary Model GW Frequency [nHz] 3×10^{1}

luminosity function

Xin & ZH 2021; Kulkarni+2019

SMBH merger rate density

 $\frac{d^3n}{dMdqdz}(M,q,z)$

quasar lifetime ($\sim 3 \times 10^8$ yr) Eddington ratio ($f_{Edd} \sim 0.25$) SMBH mass ratio ($q \sim 1$) binary fraction ($f_{bin} \sim 1$)

Gravitational waves

Agazie+2023; NANOGrav15

luminosity function

Xin & ZH 2021; Kulkarni+2019

quasar lifetime ($\sim 3 \times 10^8$ yr) Eddington ratio ($f_{Edd} \sim 0.25$) SMBH mass ratio ($q \sim 1$) binary fraction ($f_{bin} \sim 1$) $\frac{d^3n}{dMdqdz}(M,q,z)$

inspiral rate (GWs + gas Agazie+23)

Gravitational waves

 $\frac{dE_f}{dlnf}(M,q,z,f)$

(Peters 1964)

luminosity function

Xin & ZH 2021; Kulkarni+2019

SMBH merger rate density

 $\frac{d^3n}{dMdqdz}(M,q,z)$

inspiral rate (GWs + gas Agazie+23)

Gravitational waves

(Peters 1964)

Result

OK, but can we identify the actual EM counterpart of an individual LISA source?

Binary Black Holes are Periodic

three reasons

I. Hydrodynamical modulations for near-equal mass

II. Doppler effects for unequal mass, inclined

III. Self-lensing for near-equal mass, edge-on

Equal-mass, circular binary

Westernacher-Schneider et al. (2022)

Sailfish; GPU-enabled 2D hydro code, Cartesian coö's mass ratio (q), eccentricity (e), temperature (*M*)

Ryan Westernacher -Schneider

 * also interesting dependence on mass ratio: Duffell+20 q≤0.05: steady 0.05 ≤ q ≤ 0.3 single sinusoid q≥0.3: lump
* additional beat frequencies from precession Westernacher-Schneider+23

Periodicity from Doppler boost ("EM chirp")

ZH 2017, D'Orazio+2016, Duffell+2020

Graham+2015, Dorazi+2016, Xin+2020

compact LISA binary

X-ray emission from quasars: few R_g Minidisk = X-ray corona of single BH Doppler brightness modulation $O(v/c) \sim 0.1$

Wide EM binary

opt/UV from ~ few 100 R_g minidisk = AGN disk P~yr \rightarrow v/c ~ 0.01

 \rightarrow dominates over hydro-variability for q=M₂/M₁ \leq 0.05 \leftarrow

flares visible within ±3-30° of edge-on

- shadow visible if $\pm 1-10^{\circ}$ of edge-on

- week-long flares in periodic quasars
- 10x higher chance for LISA binaries (already compact)

 → 100s detectable by
Vera Rubin Observatory (LSST, 2024+)
Park et al. (2024)

Recurring Self-Lensing Spikes

$$\int_{2}^{2} \int_{-25}^{2} \int_{0}^{2} \int_{25}^{2} \int_{-25}^{2} \int_{0}^{2} \int_{25}^{2} \int_{0}^{2} \int_{25}^{2} \int_{0}^{2} \int_{25}^{2} \int_{0}^{2} \int_{25}^{2} \int_{0}^{2} \int_{1}^{2} \int_{0}^{2} \int_{0$$

note: $\theta_{\rm F}/\theta_{\rm bin} = (2a_{\rm bin}/R_{\rm s})^{-1/2}$

toy disks Davelaar & ZH (2022a,b)

compact (d=100 R_s) edge-on binary i= 90°

"Spikey" Hu+2020

Can we find LISA counterparts?

OK, binaries are periodic... but:

- 1. What happens after GW-driven runaway, near merger? Is there still gas? Do binaries remain bright & periodic ?
- 2. How do we find these periodic sources? Pre-merger LISA localization seems too poor for a triggered search.

EM signatures at merger

Luke Krauth et al. (2023)

Follow GW inspiral ($10^6 M_{\odot}$) for last ~month before merger (~1000 orbits) Follow post-merger disk including recoil and mass-loss of remnant

Disappearing minidisks!

Binary suddenly vanishes in X-rays? But stays in optical UV and infrared Can catch this with Athena (use LSST or its archival data) No need for premerger localization and monitoring

Beyond vanilla circular inspiral....

Retrogade inspiral:

→ no minidisks, earlier rebrightening, QPEs O'Nell, Tiede, D'Orazio, ZH, MacFadyen (arXiv:2501.11679)

David O'Neill

Unequal-mass inspiral:

→ cavity smaller, X-ray drop delayed, preceded by flare Krauth+(arXiv:2503.01494)

GR precession:

→ extra EM periodicity measurable for M=10⁵ -10^7 M_☉ with e>0.25 and a=100-1000 R_s de Laurentiis, ZH, + (arXiv:2405.07897)

Stan de Laurentiis

Can we find LISA counterparts?

OK, binaries are periodic... but:

- 1. What happens after GW-driven runaway, near merger? Is there still gas? Do binaries remain bright & periodic ?
- 2. How do we find these periodic sources? Pre-merger LISA localization seems too poor for a triggered search.

Pre-merger localization - ouch

Mangiagli et al. 2020

Look for targets in LSST archival catalog

Look for targets in LSST archival catalog

Identifying LISA counterparts

Option 1. Detect unfolding merger by LISA first

Identify counterpart in LSST archive from historical chirp False alarm probability to mimic chirp signal is $\ll 1$

** **OR** **

Option 2: Identify binary in LSST data alone

Few hundred will become LISA source (rapid EM chirp) Many more wider binaries 100 or 1000 years from merger Xin+ZH (2021) Xin+ in prep

Xin+ZH (2024)

**** IN EITHER CASE ****

Follow-up campaign: deep EM (e.g. X-ray) observations works as long as merging binaries are often AGN

Conclusions

- 0. "Quasars=binaries" appears consistent with NANOGrav
- 1. Binaries are periodic: hydro, Doppler, self-lensing
- 2. Binaries remain bright but disappear in X-rays in last ~20 orbits
- 3. LSST archives will contain LISA source, permit triggered search
- 4. Many more wider precursors in LSST, ~10⁴ lensing flares