

Multimessenger prospects for massive black hole binaries in LISA

Alberto Mangiagli Postdoc

Based on ArXiv:2207.10678

Collaborators: Chiara Caprini, Sylvain Marsat, Marta Volonteri, Susanna Vergani, Nicola Tamanini, Henri Inchauspé

From single MBH to binaries

When two galaxies merge, the MBHs in their center form a binary and merge emitting gravitational waves (GWs) and electromagnetic (EM) radiation

At the center of galaxies, there might be enough gas to produce an EM counterpart

Multimessenger with MBHBs (ArXiv:2207.10678)

Estimate the number of counterparts over LISA time mission and constrains on the expansion of the Universe

Key improvements respect to previous works (Tamanini+16)

- > Improve the modeling of the EM counterpart
- > Bayesian analysis for GW signal : *lisabeta* (Marsat+20)

Starting point

> Semi-analytical models: tools to construct MBHBs catalogs (Barausse+12)

Constructing the population of MBHBs with EM counterpart

AGN obscuration (Ueda+14, Gnedin+07)

Radio Jet (Cohen+06)

Two main scenarios

General procedure

We focus on two scenarios

Maximising

No AGN obscurationIsotropic radio emission

Some caveats

> Detection is claimed when $F > F_{lim}$

(Lops+22) Detection \neq Identification

Minimising

- ► AGN obscuration
- Collimated radio emission

Analysis valid only for postmerger emission
No tiling of LISA area

Redshift and total mass distributions

Redshift and total mass distributions

Redshift and total mass distributions

EMcps in optical, X-ray and radio

LISA sources might be intrinsically faint

EMcps in 4 yr

(In 4 yr)	LSST, VRO	SKA+ELT			Athena+ELT		
		Isotropic	$ heta\sim 30^\circ$	$\theta \sim 6^{\circ}$	Catalog	Eddington	
					$F_{\rm X, lim} = 4e-17$	$F_{\rm X,lim}$ = 4e-17	
		$\Delta\Omega = 10{ m deg^2}$			$\Delta\Omega=0.4\text{deg}^2$	$\Delta\Omega=0.4\text{deg}^2$	
No-obsc.	0.84	6.4	1.51	0.04	0.49	1.02	Light
	3.07	14.8	2.71	0.04	2.67	3.87	Heavy
	0.53	20.3	3.2	0.04	0.58	4.4	Heavy-no-delays
Obsc.	0.13	6.4	1.51	0.04	0.04	0.13	Light
	0.75	14.8	2.71	0.04	0.22	0.18	Heavy
	0.35	20.3	3.2	0.04	0.18	0.27	Heavy-no-delays

 Dramatic decrease with obscuaration and radio jet
 Parameter estimation selects preferentially heavy

(In 4 yr)	Maximising	Minimising	
Light	6.4	1.6	
Heavy	14.8	3.3	
Heavy-no-delays	20.7	3.5	

"Multimodal" LISA events

Systems with multimodal sky posterior distribution from LISA data analysis

> Arise from LISA degeneracy pattern function

> Degeneracies can be broken with :

- > Orbital motion of the detector for $f \sim 10^{-4}$ Hz
- > High frequency response of the detector for $f \sim 10^{-3} 10^{-2}$ Hz

Multimodality in the parameter space

> 1mode systems are the vast majority

- > 2mode systems appear at high mass and high redshift
- Still large spread across sub-populations

Contribution of multimodal events

Modes probability

Contribution to the expected rate in 4 yr

	1mode	2modes	8modes
Light	6.0	0.31	0.13
Heavy	10.7	3.9	0.18
Heavy-nd	16.8	3.5	0.4

2modes have always one mode more probable than the other
8modes provide <1 counterparts in the entire mission

Multimodal events do not contribute (significantly) to the number of EMcps

Multimessenger with MBHBs will be challenging

EMcps to MBHB mergers in LISA

- > Most sources are faint (see also Villalba+23)
- Obscuration and collimated radio emission decrease the counterpart rates by ~ 75%
- ► Few events ⇒ we need accurately planned follow-up strategy

Sky localization of MBHB mergers in LISA

- Multimodality affect high-redshift sources
- > Multimodal events do to not contribute significantly to the number of EMcps
- > Stay tuned for new results (Marsat,..., AM+ in prep.)

Multimessenger with MBHBs will be challenging

EMcps to MBHB mergers in LISA

- > Most sources are faint (see also Villalba+23)
- Obscuration and collimated radio emission decrease the counterpart rates by ~ 75%
- ► Few events ⇒ we need accurately planned follow-up strategy

Sky localization of MBHB mergers in LISA

- Multimodality affect high-redshift sources
- > Multimodal events do to not contribute significantly to the number of EMcps
- > Stay tuned for new results (Marsat,..., AM+ in prep.)

Thanks! Any question ?

Backup slides

Reconstructing the binary sky position with LISA

Identifying the real host galaxy

How many galaxies there will be in LISA error volume?

