

Identifying Compact SMBHBs in LSST using Bayesian Analysis

10 Years (!!) to LISA Conference (JPL) 04/01/25 - 04/03/25

Chengcheng Xin (Columbia Astronomy and THEA) Collaborators: Zoltán Haiman, Max Isi, Will Farr

Number of Quasars in LSST

10 Years to LISA Conference 04/01/25 — 04/03/25

- LSST is expected to observe ~ 100 million quasars before the launch of LISA
- 2. A small fraction can be compact GWdriven SMBH binaries

 $t_{\rm m}/t_{\rm Q} \sim 10^{-4} - 10^{-3}$) $t_{\rm Q} \sim 10^7$ years)

- 3. Up to 150 can be LISA binaries, assuming $t_m = 5 - 15$ years [Xin + Haiman 2021]
- 4. Orbital periods can vary from years to days + "EM chirp" (Robust evidence for SMBHBs) $f \propto M_c^{5/3} f^{11/3}$

Identifying EM counterpart of LISA GWs

Detecting compact binaries with "EM chirp" will require:

(I) combining with GWs [Xin+Haiman 2024]
(II) Bayesian inference: new analysis techniques for chirping periodicity [Xin, Isi, Farr, Haiman 2025, in prep.]

Orbital Periods of LSST Binaries with Time-to-merger t_m

Fiducial

$$t_m \propto M_{\rm bin}^{-5/3} \left(\frac{P}{1+z}\right)^{8/3}$$
$$N_{\rm bin} = \left[\frac{t_{\rm m}}{t_{\rm Q}}\right] f_{\rm bin} N_Q \sim 500$$

Mock binary lightcurves

Mock LSST lightcurve

10 Years to LISA Conference 04/01/25 — 04/03/25

- Chirp: sinusoidal variability caused by relativistic DB — $A, \omega, \omega, \mu, \phi$ (we assume $\omega = 0$; A=0.5 mag)
- DRW ("damped random walk"): stochastic AGN variability σ , τ
- Data: DB + DRW + (Gaussian) Phot.
 Err.

LSST Specs: 6 d cadence and 1/3 year seasonal gaps

Mock LSST lightcurve

10 Years to LISA Conference 04/01/25 — 04/03/25

Data: DB + DRW + (Gaussian) Phot.
Err.
Bayesian pipeline

Measured seven DB and DRW parameters Questions: 1. Can we detect chirp $(A \neq 0, \omega \neq 0 \text{ etc.})$? 2. Is binary model preferred over pure DRW?

3. What is the significance that each parameter can be measured?

Bayesian Model Selection

<u>Priors</u> given by $\Delta \log M_{\rm bh} \sim 1$	
$\frac{\Delta\omega}{\omega} = -\frac{5}{11} \frac{\Delta\mathcal{M}_c}{\mathcal{M}_c} = 0.39$	A
$\Delta \omega$ 5 ΔM_{o}	0.
$\frac{1}{10} = \frac{3}{3} \frac{-M_c}{M_c} = 1.43$	·3 0.
	0.
$(\omega > 0)$	78.

Non-zero binary parameters, З 78.68 e.g. $\omega \neq 0 \rightarrow$ chirp is detected! 78.66

Amplitude (A) detection

10 Years to LISA Conference 04/01/25 — 04/03/25

"z-score" of A for 100 LSST binaries with $t_m = 50$ years

Chirp detectable using our Bayesian algorithm

Z-score of *A* **for different** t_m

Dependence of z-score on binary amplitude *A*

Detectability of frequency chirp ω

z-score increases with true A; z-score \geq 5 when $A \geq 0.1$.

10 Years to LISA Conference 04/01/25 — 04/03/25

• z-score are greater when binaries have smaller $P \leftarrow$ more cycles in the lightcurve

11

Physical properties: time-to-merger and chirp mass

Summary and future plans

Summary

- Compact SMBH binaries ($t_m = 15 10^4$ years) in LSST are detectable using our Bayesian model selection pipeline, before the launch of LISA
- We measure non-zero binary parameters, including A, ω , $\dot{\omega}$, with high significance
- Generally, z-score of binary parameters increase as a function of true A
- High z-score from measuring binary parameters compared to DRW parameters suggests that binary models are preferred over pure noise
- Chirp mass and time-to-merger can be well measured within 2σ from the truth

Future plans

- Run analysis for SMBHB candidates from CRTS and PTF
- Apply to LSST data starting late 2025/early 2026

10 Years to LISA Conference 04/01/25 — 04/03/25

• Testing alternative binary models (e.g. saw-tooth shaped variability from hydro-sims)

Back-up: Orbital Periods of LSST Binaries with Time-to-merger t_m

Frequency rate of change

Chirp Mass

Time-to-merger

(Observed) orbital frequency

$$f_{\rm gw} \propto M_c^{5/3} f_{\rm gw}^{11/3}$$

$$M_c^{5/3} = \frac{q}{(1+q)^2} M_{bin}^{5/3}$$

 $(q = 0.1)$

$$t_{m,r} = (3/8) f_{gw} / f_{gw}$$

$$f = 2f_{\rm gw}(1+z)^{-1}$$

Back-up: Mock LSST lightcurve

Back-up: quadratures a and b z-scores

 $A = \sqrt{}$

10 Years to LISA Conference 04/01/25 — 04/03/25

 $a^{2} + b^{2}$

Back-up: runtime

10 Years to LISA Conference 04/01/25 — 04/03/25

18