Gravitational wave-driven mass transfer in the shortest-period binaries

arXiv:2411.12796 ApJ, 977, 2 (Dec. 2024)

Joheen Chakraborty (MIT)

w/ Kevin Burdge, Saul Rappaport, Scott Hughes, Erin Kara, Emma Chickles (MIT), James Munday (Warwick), Hai-Liang Chen (Yunnan), Pablo Rodriguez-Gil (IAC), Vik Dhillon (Sheffield), ZTF Team (Caltech, ++), and others!

CLOSE BINARIES 0 MAIN-SEQUENCE BINARY \bigcirc (SUPER)GIANT + MS (\circ) COMMON ENVELOPE 0 OUTFLOW OF 0 COMMON ENVELOPE "Hydrogen" WD + MS• < AM CVn STAR WD + (SUPER)GIANT 0 DEGENERATE CO OR He CORE NONDEGENERATE He CORE COMMON O 0 COMMON ENVELOPE 0 0 ENVELOPE WD + He STAR He-DONOR OUTFLOW OF \bigcirc AM CVn STAR COMMON ENVELOPE 0 DOUBLE DEGENERATE SN Ia or SN .Ia? AM CVn STAR • WD + PLANET SN Ia or SN .Ia?

Binary stellar evolution: the standard picture

Kupfer, Korol+24

models from Wong+21

Period vs.
$$J_{\text{orb}}$$
:
 $P = J^3 (M_1 + M_2) (M_1 M_2)^{-3} \left(\frac{2\pi}{G^2} \right)$

d InP/dt:

$$\frac{\dot{P}}{P} = 3 \left[\frac{\dot{J}}{J} + \frac{|\dot{M}|}{M_2} (1-q) \right]$$

$$q = M_1 / M_2$$

models from Wong+21

models from Wong+21

Can also vary M_1 , M_2 ,

donor thermal evolution, ...

How can we *test* these models and *learn something* about the uncertain physics?

Chakraborty+24

long-baseline photometry

200 100

0

-100

Expanding the ultracompacts: gravitational wave-driven mass transfer in the shortest-period binaries with accretion disks

Joheen Chakraborty ⁽⁰⁾, ¹ Kevin B. Burdge ⁽⁰⁾, ¹ Saul A. Rappaport ⁽⁰⁾, ¹ James Munday, ² Hai-Liang Chen, ^{3,4} Pablo Rodríguez-Gil ⁽⁰⁾, ^{5,6} V. S. Dhillon ⁽⁰⁾, ^{7,5} Scott A. Hughes ⁽⁰⁾, ¹ Gijs Nelemans ⁽⁰⁾, ^{8,9,10} Erin Kara ⁽⁰⁾, ¹ Eric C. Bellm ⁽⁰⁾, ¹¹ Alex J. Brown ⁽⁰⁾, ¹² Noel Castro Segura ⁽⁰⁾, ² Tracy X. Chen ⁽⁰⁾, ¹³ Emma Chickles ⁽⁰⁾, ¹ Martin J. Dyer ⁽⁰⁾, ⁷ Richard Dekany ⁽⁰⁾, ¹⁴ Andrew J. Drake, ¹⁵ James Garbutt ⁽⁰⁾, ⁷ Matthew J. Graham ⁽⁰⁾, ¹⁵ Matthew J. Green ⁽⁰⁾, ¹⁶ Dan Jarvis ⁽⁰⁾, ⁷ Mark R. Kennedy ⁽⁰⁾, ¹⁷ Paul Kerry, ⁷ S. R. Kulkarni ⁽⁰⁾, ¹⁵ Stuart P. Littlefair ⁽⁰⁾, ⁷ Ashish A. Mahabal ⁽⁰⁾, ¹⁵ Frank J. Masci ⁽⁰⁾, ¹³ James McCormac ⁽⁰⁾, ² Steven G. Parsons ⁽⁰⁾, ⁷ Ingrid Pelisoli ⁽⁰⁾, ² Eleanor Pike, ⁷ Thomas A. Prince, ¹⁵ Reed Riddle ⁽⁰⁾, ¹⁵ Jan van Roestel ⁽⁰⁾, ¹⁸ Dave Sahman, ⁷ Avery Wold ⁽⁰⁾, ¹³ and Tin Long Sunny Wong ⁽¹⁹⁾

arXiv:2411.12796

$$\begin{split} \frac{\dot{P}}{P} &= 3 \left[\frac{\dot{J}}{J} + \frac{|\dot{M}|}{M_2} (1-q) \right] \\ \text{Write in terms of stellar evolution parameters ($\xi_{ad}, χ_{evol}) \\ \begin{pmatrix} \frac{\dot{P}}{P} \end{pmatrix}_{eq} &= 3 \left(\frac{\dot{J}}{J} \right)_{GW} \left[\frac{\xi_{ad} + \chi_{evol}(1-q) - 1/3}{\xi_{ad} + 5/3 - 2q} \right] \end{split}$$

Every system near period minimum² with a direct *P*-dot measurement: ZTF J1858 ES Ceti 0 ZTF J0546 5 ZTF J0127 V407 Vul SDSS 1065 ⁶ (10⁻¹¹ s/s) 0 $^{-1}$ ZTF J2243 -5 ZTF J1539 Ρ -10-3 30 HM Cnc 25 Direct-impact accretors -4 20 Disk accretors Detached systems 15 10 10 12 8 P (min) 5 P (min)

10³ 104 105 106 107 108 Time (yr) $\mathcal{N}_{\rm out/in} \equiv \left| \frac{\dot{P}_{\rm in}}{\dot{P}_{\rm out}} \right| \approx 4(P/10\,{\rm min})(M_{\rm He}/0.15\,M_{\odot}) \quad \dots \text{ the observed P-dot distribution is} \\ \text{(Kaplan+12)} \qquad \text{perhaps odd, but it's still early}$

14

Spectroscopy + photometry

+ GW signal

Many simultaneous data channels will allow for new, precise mapping of these systems and their accretion disks!

<u>Ultracompact binaries</u>

Evolutionary models Observational tests rates/population forecasting individual high-SNR sources

Ultracompact binaries

Evolutionary models Observational tests

LISA observations

Complementary GW signal

Ultracompact binaries

tates loopulation to recasting

Evolutionary models Observational tests rates/population forecasting individual high-SNR sources

LISA observations

Complementary GW signal

Astrophysics

Binary evolution outcomes Type Ia progenitors Hypervelocity stars Accretion disk structure

My other hobby in *LISA* science: quasi-periodic eruptions (X-ray counterparts to EMRIs?)

QPE timing: SMBH dynamical probes down to ~100 $\rm R_{g}$

QPE spectra: probes of energy dissipation \Rightarrow orbital decay

Chakraborty+24a

Chakraborty+25b

Arcodia+24c (incl. Chakraborty)

Preliminary observations of orbital

decay driven by GWs + gas

Thanks for listening! Reach me at joheen@mit..edu Chakraborty et al., 2024 – arXiv:2411.12796 (Dec. 2024)