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Very Large Telescope Interferometer (VLTI), 

Paranal Observatory

Primary mirror of each telescope: 

diameter of 8.2 meters

The GRAVITY interferometer



The GRAVITY interferometer

Very Large Telescope Interferometer (VLTI), 

Paranal Observatory

GRAVITY, Near-Infrared Interferometer


D = 130 m

• 4 mas 
angular 
resolution

•
astrometric 
accuracy

30 μas



The GRAVITY+ interferometer

Very Large Telescope Interferometer (VLTI), 

Paranal Observatory

D = 130 m

• 4 mas 
angular 
resolution

•
astrometric 
accuracy

30 μas

• GRAVITY+ upgrade completed 
by 2026: factor 10-100 
improvement in sensitivity



The S-Stars in the Galactic CenterThe Galactic center

Credit: ESO



Image of the central parsec of the Galaxy, 

with single 8m telescope


1.5 arcsec  60 mpc≈

Time-lapse of stars orbiting Sagittarius A* 
over 20 years, with single 8m telescope

The S-Stars in the Galactic center

2 years of GRAVITY data 

(reconstructed images)

0.15 arcsec  6 mpc≈

1 pc

Sgr A*



The S2 star

Orbit of S2 around Sagittarius A*

• Allowed determining that Sgr A* is a SMBH and measuring 
its mass and distance:

M∙ = 4.3 × 106 Msun , R0 = 8.3 kpc

• Allowed testing General Relativity: 1PN effects detected

Sgr A*

Gravitational redshift Schwarzschild precession

GRAVITY Collaboration 18,19, Do et al. 19 GRAVITY Collaboration 20,22,24

20  detection≈ σ 10  detection≈ σ



The extended mass distribution in the GC 
“Dark mass” within the orbits of S-stars

Sgr A*
1.5 arcsec  60 mpc≈

S-Stars: O/B young, massive stars

Compact remnants

Faint, low-mass stars

Dynamically relaxed cusp 
of old stars and stellar 

remnants is predicted to 
exist in the GC 

Dark matter could be 
accreted by the 
SMBH to form a 

dense spike

? Dark matter spike

ρ(r) ∝ rs

Formation of EMRIs

Peebles (1972); Frank & Rees (1976); Bahcall & Wolf (1976 & 1977); 
Alexander & Hopman (2009); Preto & Amaro-Seoane (2010); 

Gondolo & Silk (1999); Shen et al. (2024);



• GR: prograde precession δφ > 0

• Extended mass: retrograde precession δφ < 0

A spherically symmetric distribution of matter with density  
causes a retrograde precession of the star’s orbit

ρ(r)

Effect of an extended mass distribution



Fit data of S2, S29, S38 and S55 for 
parameters ρ0, ρ̃

• Power-law profile • Plummer profile 

 ρ(r) = ρ̃ ( r
r0 )

s
 ρ(r) = ρ0 [1 + ( r

a )
2

]
−5/2

Obtain enclosed mass within S2 orbit 

• Assume a smooth density distribution of matter:

with −3 < s ≤ 0 with  mpc0 < a ≤ 40

Orbits of a set of S-stars
(Within the central  mpc of the Galaxy)≈ 10

Constraining an extended mass distribution: 
How much “dark mass” lies within the S2 orbit?

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)



S2

Mencl,S2 ≲ 1200 M⊙ (1σ)

Retrograde precession ≲ 1′ per orbit subdominant with respect to prograde, 
relativistic precession (δφ ∼ 12′ per orbit)

Power-law profile Plummer profile

independent of density profile

Constraining an extended mass distribution: 
Upper limit on “dark mass” within S2 orbit

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)



S2

• Upper limit very close to 
predicted value

•  No evidence of a dark 
matter spike

Enclosed mass profile for a stellar cusp in the Galactic center from 

numerical simulations (Zhang & Amaro-Seoane 2025)

Predicted value

Mencl,S2 = 1210 M⊙

• Most of the enclosed mass 
is made of stellar-mass 

black holes 

Comparison with theoretical models for the stellar cusp

Upper limit 
from GRAVITY 

Coll. 2024

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)



S2

Assuming a smooth, extended mass distribution around Sgr A*:  
we will measure it by 2031, tracking >10 stars with GRAVITY(+)

Constraining the extended mass distribution within S2 orbit: 
Future improvements with GRAVITY+

Posterior distribution on the enclosed mass within S2 orbitMock data for a set of S-stars until 2031



S2
•  objects of 

•  objects of 

•  objects of 

50 20 M⊙
20 50 M⊙
10 100 M⊙

The granularity of the mass distribution: 
Scattering of the S2 orbit by stellar-mass black holes

Mencl,S2 = 1000 M⊙

• Full N-body simulations of the orbit of S2, assuming the 
mass distribution is made of a cluster of stellar-mass 
black holes of equal mass:

What’s the impact on the orbit of S2?

Is a smooth mass distribution a good 
approximation in this region?

(M. Sadun Bordoni et al. 2025, submitted to A&A)



S2

• Mock data analysis: residuals of simulation data with respect to best-fit relativistic orbit, without 
additional granular potential

• At apocenter: residuals in declination larger than accuracy 
of GRAVITY ( ) in 35-60% of the simulations 

We could detect this effect in the upcoming years!
≈ 30 μas

• Residuals in radial velocity 
always smaller than current 
accuracy (  for S2)≈ 7 km/s

The granularity of the mass distribution: 
Scattering of the S2 orbit by stellar-mass black holes

(M. Sadun Bordoni et al. 2025, submitted to A&A)



S2

The granularity of the mass distribution: 
Scattering of the S2 orbit by stellar-mass black holes
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S2

The granularity of the mass distribution: 
Scattering of the S2 orbit by stellar-mass black holes

• Mock data analysis: residuals of simulation data with respect to best-fit relativistic orbit, without 
additional granular potential

• At apocenter: residuals in declination larger than accuracy 
of GRAVITY ( ) in 35-60% of the simulations 

We could detect this effect in the upcoming years!
≈ 30 μas

• Residuals in radial velocity 
always smaller than current 
accuracy (  for S2)≈ 7 km/s

(M. Sadun Bordoni et al. 2025, submitted to A&A)



Mock image of the GC with MICADO,

With the known S-stars

Model of MICADO: 

Multi-AO Imaging Camera 
for Deep Observations

(Credit: ESO)

• Main mirror of 39 meters 
• Improvement in sensitivity of factor  compared 

to GRAVITY+, but lower angular resolution
> 100

Detecting fainter stars: 
The Extremely Large Telescope

ELT under construction, time-lapse

(Credit: ESO)



• Detect the fainter, main-sequence stars of  
and measure their density profile

m ≲ 1.5 M⊙

Model of MICADO: 

Multi-AO Imaging Camera 
for Deep Observations

(Credit: ESO)

• Main mirror of 39 meters 
• Improvement in sensitivity of factor  compared 

to GRAVITY+, but lower angular resolution
> 100

Is there a dynamically relaxed stellar cusp in the GC?
(Baumgardt, Amaro Seoane et al. 2018, Schödel et al. 2018, Gallego-Cano et al. 2018)

Mock image of the GC with MICADO, including 

potential fainter stars following a power-law cusp

Detecting fainter stars: 
The Extremely Large Telescope

ELT under construction, time-lapse

(Credit: ESO)



S2

Enclosed mass profile for a stellar cusp in the Galactic center from numerical simulations 

(Zhang & Amaro-Seoane 2025)

The mass distribution in the Galactic center: 
What can we learn before LISA flies?

Measurement of 
enclosed mass 
within S2 orbit 

(GRAVITY+)

Evidence of 
stellar-mass-
black holes 
from scattering 
(GRAVITY+)

Measurement of 
density profile of 
old, MS stars 
(ELT/MICADO)

• What is the EMRI rate in a 
Milky Way—like Galaxy?

The Milky Way is a standard galaxy for LISA: what can we learn from 
our own Galactic center about the mass distribution around SMBHs?

• Is there a dynamically 
relaxed stellar cusp in 
the GC?

• Will we observe early 
EMRIs and XMRIs in the 
GC?

(Amaro Seoane 2019, Amaro Seoane et al. 2025)



Towards the measure of the spin of Sgr A* 
The Lense-Thirring precession

• Lense-Thirring effect is orders of magnitude 
smaller than the Schwarzschild precession:

Minimum value of the spin detectable in function of pericenter 
distance (Capuzzo-Dolcetta & Sadun-Bordoni, MNRAS 2023)

• Too small to be detected with S2: need a star 
with pericenter distance at least 3 times smaller

Lense-Thirring effect

 for S2δΦLT = 4πχ ( RS

2a(1 − e2) )
3/2

∼ 0.1′ per orbit

ELT Spectroscopy GRAVITY+ astrometry



Reconstructed images of the Galactic center in 2023 
(F. Mang & GRAVITY+ Collaboration 2025, in prep.)

Towards the measure of the spin of Sgr A* 
S301: A possible candidate

Orbit of S301 

Sgr A*

2023

2024

2025

Next pericenter 
passage around 2030

• Faintest star detected so far with GRAVITY  
• Pericenter distance 3-5 times smaller than S2

Observing it at the next pericenter 
passage might give us the spin of Sgr A*



Summary: 
What do we know?

• Schwarzschild precession of the S2 orbit: 
measured with ~10  confidenceσ

• Constraints on the extended mass distribution 
around Sgr A*: upper limit of  within 
S2 orbit (~10 mpc), assuming smooth density profile

≈ 1200 M⊙

1. Upper limit very close to theoretical predictions 
for the stellar cusp in the Galactic center


2. No evidence of a dark matter spike around Sgr A*



• Future goals with GRAVITY+ and the ELT:

1. Measuring the spin of Sgr A*

2. Measuring the “dark” mass enclosed within the S2 orbit

3. Measuring scattering on the S2 orbit by stellar-mass 

black holes

4. Measuring the density profile of the faint, old, low-mass 

stars that are part of the cusp

What is the mass distribution near MBHs in galactic 
nuclei? Is there a dynamically relaxed cusp?

What is the EMRI rate in Milky Way - like galaxies?

Summary: 
What can we learn before LISA flies?

ELT



Backup slides



The GRAVITY+ upgrade
With Laser Guide Stars and new Adaptive Optics system for each telescope:  

improvement of factor 10-100 in sensitivity!



The Lensing candidate S62
Potential detection of lensing of S62 by Sgr A*: another test of GR in the GC 

GRAVITY data in 2025 will be key to measure it

Sgr A*

S62



Flares of Sgr A*

2 years of GRAVITY data 

(reconstructed images)

0.15 arcsec  6 mpc≈

Sgr A*

Astrometry of flares orbiting Sgr A* close to 
the ISCO (GRAVITY Coll. 23)



Flares of Sgr A*

2 years of GRAVITY data 

(reconstructed images)

0.15 arcsec  6 mpc≈

Sgr A*

Simulation of hotspot orbiting Sgr A* close to the ISCO 

(Credit: ESO/Gravity Coll./L. Calçada)



Flares of Sgr A*

GRAVITY acquisition camera

•Sudden increase in brightness in NIR emission of Sgr A*: most likely locally heated electrons emitting synchrotron radiation

•We measure the centroid motion of the emission

Flare orbit

Sgr A*



Flares of Sgr A*
•We obtained 4 astrometric orbits of flares with 

GRAVITY:

1. All clockwise

2. All similar period of few tens of minutes

3. All similar radius of ~ 75 μas

We combine the data in a single, averaged orbit 
and fit a relativistic hotspot model:

Average of four observed flares with GRAVITY

• Radius:  

• Inclination:  

• Position angle  

• Enclosed mass  

R = 8.9+1.5
−1.3 Rg

i = 154.9+4.6
−4.6 deg

Ω = 177.3+24
−23 deg

M∙ = 4.2+1.2
−0.9 × 106M⊙



Schwarzschild precession of S2 orbit

Sgr A*

Prograde, in-plane precession of the 
orbit’s pericenter angle, predicted by 
General Relativity

δφ1PN =
6πG
c2

m∙

a(1 − e2)
∼ 12′ per orbit

Orbit of S2 around Sagittarius A*

Our measurement, assuming :

 fSP = 1.1 ± 0.1
10  detection≈ σ

⃗a S2 = GM∙
⃗r

| ⃗r |3 + fSP ⃗a 1PN

δφobs = fSP × δφ1PN
Sgr A*



Example of posterior distribution on the enclosed mass 
within S2's orbit, showing how the  and  upper limits 
are derived (multi-star fit, power-law with slope ).

1σ 3σ
s = − 2.2

Assuming as a prior that , fit for  and 
convert the posterior distribution into a distribution on 


ρ(r) ≥ 0 ρ̃

Mencl,S2 = m(rperi,S2 < r < rapo,S2)

 ρ(r) = ρ̃ ( r
r0 )

s

 m(r) =
4πρ̃

3 + s ( r3+s

rs
0 )

Power-law  
density profile Mass profile

derive  and  upper limits 1σ 3σ

Constraining an extended mass distribution

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)



S2

Power-law profile Plummer profile

 (1 )Mencl,S2 ≲ 3000 M⊙ σ

Retrograde precession ≲ 2′ per orbit

Constraining the extended mass distribution (S2 only fit)

Significantly worse constraint 
with respect to multi-star fit

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)



• Global deviation of the potential from spherical symmetry and local scattering events with field objects 

S2

Star acquires a Z component 

(out of the initial orbital plane),


5 example cases

Precession of the orbital plane,

5 example cases

• Depending on the sampling, weaker or stronger scattering events can occur

Strong scattering
Strong scattering

(M. Sadun Bordoni et al. 2025, submitted to A&A)

The granularity of the mass distribution: 
Scattering of the S2 orbit by stellar-mass black holes



S2

Statistical study unreachable with extensive 
full N-body simulations

The granularity of the mass distribution: 
Simplified dynamical approach

Orbit of S2 around Sgr A* and a particular realisation of 
the distribution of surrounding cluster objects

• Simulate at 1PN order the orbit of S2 around Sgr A* 
and cluster of particles of equal mass m

(M. Sadun Bordoni et al. 2025, submitted to A&A)



S2

Larger deviations for larger mass of the cluster objects  
and larger total mass of the cluster

The granularity of the mass distribution: 
Simplified dynamical approach

• Global asymmetry of the potential and local scattering events lead to deviations from the 
orbit in a smooth potential

(M. Sadun Bordoni et al. 2025, 
submitted to A&A)



S2

Global asymmetry of the potential and local scattering events lead to  
deviations from the orbit in a smooth potential:

•Variation of the in-plane precession • Precession of the orbital plane

(M. Sadun Bordoni et al. 2025, submitted to A&A)

The granularity of the mass distribution: 
Comparison with full N-body simulations



S2

(remember that the observational 
result, fitting the actual S2 data, is:  

)fSP = 1.1 ± 0.1

The granularity of the  
mass distribution  

could significantly alter  
the S2 orbit with respect to  

the Schwarzschild case

The granularity of the mass distribution: 
Deviations from a Schwarzschild orbit

• Mock data analysis: fitting the simulation 
data for the  parameterfSP

(M. Sadun Bordoni et al. 2025, 
submitted to A&A)


