The Galactic center with GRAVITY(+) and the ELT: what can we learn before LISA flies?

"Ten years to LISA", JPL, Pasadena, April 3rd 2025

Matteo Sadun Bordoni Max Planck Institute for Extraterrestrial Physics **GRAVITY** Collaboration

MPE

The GRAVITY interferometer

Primary mirror of each telescope: diameter of 8.2 meters

The GRAVITY interferometer

Very Large Telescope Interferometer (VLTI), Paranal Observatory

D = 130 m

 4 mas angular resolution

 30 µas astrometric accuracy

GRAVITY, Near-Infrared Interferometer

The GRAVITY+ interferometer

D = 130 m

 4 mas angular resolution

 30 µas astrometric accuracy

 GRAVITY+ upgrade completed by 2026: factor 10-100 improvement in sensitivity

The Galactic center

The S-Stars in the Galactic center

Image of the central parsec of the Galaxy, with single 8m telescope

> I ime-lapse of stars orbiting Sagittarius A* over 20 years, with single 8m telescope

1.5 arcsec \approx 60 mpc

0.15 arcsec \approx 6 mpc

2 years of GRAVITY data (reconstructed images)

GRAVITY Collaboration 18,19, Do et al. 19

Orbit of S2 around Sagittarius A*

The S2 star

Allowed determining that Sgr A* is a SMBH and measuring its mass and distance:

$M_{\bullet} = 4.3 \times 10^6 M_{sun}$, $R_0 = 8.3 \, kpc$

Allowed testing General Relativity: 1PN effects detected

Gravitational redshift

Schwarzschild precession

GRAVITY Collaboration 20,22,24

\approx 10 σ detection

\approx 20 σ detection

The extended mass distribution in the GC "Dark mass" within the orbits of S-stars

Sar A

Dynamically relaxed cusp of old stars and stellar remnants is predicted to exist in the GC

 $\rho(r) \propto r^s$

Formation of EMRIs

S-Stars: O/B young, massive stars

Faint, low-mass stars

Dark matter spike

Dark matter could be accreted by the SMBH to form a dense spike

1.5 arcsec \approx 60 mpc

Peebles (1972); Frank & Rees (1976); Bahcall & Wolf (1976 & 1977); Alexander & Hopman (2009); Preto & Amaro-Seoane (2010);

Gondolo & Silk (1999); Shen et al. (2024);

Effect of an extended mass distribution

A spherically symmetric distribution of matter with density $\rho(r)$ causes a retrograde precession of the star's orbit

• GR: prograde precession $\delta \phi > 0$

- Extended mass: retrograde precession $\delta \phi < 0$

Constraining an extended mass distribution: How much "dark mass" lies within the S2 orbit?

Assume a smooth density distribution of matter:

• Power-law profile

Plummer profile

with $-3 < s \leq 0$ with $0 < a \leq 40$ mpc

Fit data of S2, S29, S38 and S55 for parameters $\rho_0, \tilde{\rho}$

Obtain enclosed mass within S2 orbit

(Within the central ≈ 10 mpc of the Galaxy)

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)

Constraining an extended mass distribution: Upper limit on "dark mass" within S2 orbit

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)

Plummer profile

independent of density profile

subdominant with respect to prograde, relativistic precession ($\delta \phi \sim 12' \ per \ orbit$)

Comparison with theoretical models for the stellar cusp

Enclosed mass profile for a stellar cusp in the Galactic center from numerical simulations (*Zhang & Amaro-Seoane 2025*)

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)

Upper limit very close to predicted value

and the second of the second

No evidence of a dark matter spike

Most of the enclosed mass is made of stellar-mass black holes

Constraining the extended mass distribution within S2 orbit: Future improvements with GRAVITY+

Assuming a smooth, extended mass distribution around Sgr A*: we will measure it by 2031, tracking >10 stars with GRAVITY(+)

Posterior distribution on the enclosed mass within S2 orbit

The granularity of the mass distribution: Scattering of the S2 orbit by stellar-mass black holes

- Full N-body simulations of the orbit of S2, assuming the mass distribution is made of a <u>cluster of stellar-mass</u> black holes of equal mass:
 - 50 objects of $20 M_{\odot}$ • 20 objects of $50 M_{\odot}$ • 10 objects of $100 M_{\odot}$

What's the impact on the orbit of S2?

Is a smooth mass distribution a good approximation in this region?

The granularity of the mass distribution:

The granularity of the mass distribution:

The granularity of the mass distribution:

Detecting fainter stars: The Extremely Large Telescope

ELT under construction, time-lapse (Credit: ESO)

Model of MICADO: Multi-AO Imaging Camera for Deep Observations (Credit: ESO)

Main mirror of 39 meters
 Improvement in sensitivity of factor > 100 compared to GRAVITY+, but lower angular resolution

Mock image of the GC with MICADO, With the known S-stars

Detecting fainter stars: The Extremely Large Telescope

ELT under construction, time-lapse (Credit: ESO)

Model of MICADO: **Multi-AO Imaging Camera** for Deep Observations (Credit: ESO)

 Main mirror of 39 meters Improvement in sensitivity of factor > 100 compared to GRAVITY+, but lower angular resolution • Detect the fainter, main-sequence stars of $m \leq 1.5 M_{\odot}$. and measure their density profile

Is there a dynamically relaxed stellar cusp in the GC?

(Baumgardt, Amaro Seoane et al. 2018, Schödel et al. 2018, Gallego-Cano et al. 2018)

The mass distribution in the Galactic center: What can we learn before LISA flies?

Enclosed mass profile for a stellar cusp in the Galactic center from numerical simulations (Zhang & Amaro-Seoane 2025)

The Milky Way is a standard galaxy for LISA: what can we learn from our own Galactic center about the mass distribution around SMBHs?

Is there a dynamically relaxed stellar cusp in the GC?

What is the EMRI rate in a Milky Way—like Galaxy?

Will we observe early **EMRIs and XMRIs in the** GC?

(Amaro Seoane 2019, Amaro Seoane et al. 2025)

Towards the measure of the spin of Sgr A* The Lense-Thirring precession

Lense-Thirring effect is orders of magnitude smaller than the Schwarzschild precession:

$$\delta \Phi_{LT} = 4\pi \chi \left(\frac{R_S}{2a(1-e^2)}\right)^{3/2} \sim 0.1' \text{ per orbit for }$$

 Too small to be detected with S2: need a star with pericenter distance at least 3 times smaller

ELT Spectroscopy

or S2

Lense-Thirring effect

Minimum value of the spin detectable in function of pericenter distance (Capuzzo-Dolcetta & Sadun-Bordoni, MNRAS 2023)

Towards the measure of the spin of Sgr A* S301: A possible candidate

Faintest star detected so far with GRAVITY
Pericenter distance 3-5 times smaller than S2

Reconstructed images of the Galactic center in 2023 (F. Mang & GRAVITY+ Collaboration 2025, in prep.)

Observing it at the next pericenter passage might give us the spin of Sgr A*

Summary: What do we know?

Schwarzschild precession of the S2 orbit: measured with ~10 σ confidence

Constraints on the extended mass distribution <u>around Sgr A*</u>: upper limit of $\approx 1200 M_{\odot}$ within S2 orbit (~10 mpc), assuming smooth density profile

1. Upper limit very close to theoretical predictions for the stellar cusp in the Galactic center 2. No evidence of a dark matter spike around Sgr A*

Summary: What can we learn before LISA flies?

Future goals with GRAVITY- and the ELT:

- 1. Measuring the spin of Sgr A*
- 2. Measuring the "dark" mass enclosed within the S2 orbit
- 3. Measuring scattering on the S2 orbit by stellar-mass black holes
- 4. Measuring the density profile of the faint, old, low-mass stars that are part of the cusp

What is the mass distribution near MBHs in galactic nuclei? Is there a dynamically relaxed cusp?

•

What is the EMRI rate in Milky Way - like galaxies?

The GRAVITY+ upgrade

With Laser Guide Stars and new Adaptive Optics system for each telescope: improvement of factor 10-100 in sensitivity!

The Lensing candidate S62

Potential detection of lensing of S62 by Sgr A*: another test of GR in the GC GRAVITY data in 2025 will be key to measure it

Flares of Sgr A*

Astrometry of flares orbiting Sgr A* close to the ISCO (GRAVITY Coll. 23)

0.15 arcsec \approx 6 mpc

2 years of GRAVITY data (reconstructed images)

Simulation of hotspot orbiting Sgr A* close to the ISCO (Credit: ESO/Gravity Coll./L. Calçada)

Flares of Sgr A*

0.15 arcsec \approx 6 mpc

2 years of GRAVITY data (reconstructed images)

• We measure the centroid motion of the emission

2022-05-19--file01

GRAVITY acquisition camera

Flares of Sgr A*

• Sudden increase in brightness in NIR emission of Sgr A*: most likely locally heated electrons emitting synchrotron radiation

Flares of Sgr A*

• We obtained 4 astrometric orbits of flares with **GRAVITY**:

- 1. All clockwise
- 2. All similar period of few tens of minutes
- 3. All similar radius of ~ 75 μas

We combine the data in a single, averaged orbit and fit a relativistic hotspot model:

- Radius: $R = 8.9^{+1.5}_{-1.3} R_g$
- Inclination: $i = 154.9^{+4.6}_{-4.6} deg$
- Position angle $\Omega = 177.3^{+24}_{-23} deg$
- Enclosed mass $M_{\bullet} = 4.2^{+1.2}_{-0.9} \times 10^6 M_{\odot}$

Average of four observed flares with GRAVITY

Constraining an extended mass distribution

Example of posterior distribution on the enclosed mass within S2's orbit, showing how the 1σ and 3σ upper limits are derived (multi-star fit, power-law with slope s = -2.2).

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)

Power-law density profile

Mass profile

Assuming as a prior that $\rho(r) \ge 0$, fit for $\tilde{\rho}$ and convert the posterior distribution into a distribution on $M_{encl,S2} = m(r_{peri,S2} < r < r_{apo,S2})$

derive 1σ and 3σ upper limits

Constraining the extended mass distribution (S2 only fit)

(M. Sadun Bordoni & GRAVITY Collaboration, 2024)

12000 $a > r_{apo,S2}$ a < r_{peri, S2} 3σ upper limit 1σ upper limit 10000 \odot Z orbit 8000 S within 6000 S S ma 4000 ed Enclos 2000 10^{-1} 10^{0} 10^{1} Plummer scale radius *a* (mpc) **Plummer profile**

Significantly worse constraint with respect to multi-star fit

The granularity of the mass distribution: Scattering of the S2 orbit by stellar-mass black holes

Global deviation of the potential from spherical symmetry and local scattering events with field objects

Depending on the sampling, weaker or stronger scattering events can occur •

Star acquires a Z component (out of the initial orbital plane), 5 example cases

Precession of the orbital plane, 5 example cases

Simplified dynamical approach

Simulate at 1PN order the orbit of S2 around Sgr A* and cluster of particles of equal mass m

(M. Sadun Bordoni et al. 2025, submitted to A&A)

Ö

The granularity of the mass distribution: Simplified dynamical approach

Global asymmetry of the potential and local scattering events lead to deviations from the orbit in a smooth potential

(M. Sadun Bordoni et al. 2025, submitted to A&A)

Larger deviations for larger mass of the cluster objects and larger total mass of the cluster

The granularity of the mass distribution: Comparison with full N-body simulations

Global asymmetry of the potential and local scattering events lead to deviations from the orbit in a smooth potential:

Variation of the in-plane precession

(M. Sadun Bordoni et al. 2025, submitted to A&A)

Precession of the orbital plane

The granularity of the mass distribution: Deviations from a Schwarzschild orbit

(M. Sadun Bordoni et al. 2025, submitted to A&A)

• Mock data analysis: fitting the simulation data for the f_{SP} parameter

The granularity of the mass distribution could significantly alter the S2 orbit with respect to the Schwarzschild case

(remember that the observational result, fitting the actual S2 data, is: $f_{SP} = 1.1 \pm 0.1$)

