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Scientist Jan 2022 — Present
NASA Jet Propulsion Laboratory (JPL), Pasadena, CA, USA

Methane Modeling Lead for US GHGC at JPL

Scientist Aug 2016 — Jan 2022
SRON Netherlands Institute for Space Research, Utrecht, The Netherlands

Education

Ph.D. in Physics Aug 2012 — Feb 2017
Utrecht University, Utrecht, The Netherlands

BS-MS in Earth Sciences Jul 2007 - May 2012

Indian Institute of Science Education & Research, Kolkata, India

Research Interests

My research centers on atmospheric chemistry and physics, with a focus on satellite remote sensing
and modeling to advance understanding of the Earth’s carbon cycle. I work on two fronts: space-based
monitoring and improved prediction of carbon-cycle dynamics. Using multi-sensor observations, I develop
quantitative methods and transport-inversion frameworks to estimate emissions from anthropogenic and
natural sources.

« Satellite remote sensing of atmospheric trace gases

e Emission plume detection and quantification

¢ Atmospheric transport modeling and dispersion

« Bayesian statistics and flux inversions (variational and analytic)

¢ Machine learning for point-source detection and gridded emissions

e Improving global methane and carbon dioxide growth-rate estimates

Awards and Grants

o NASA ROSES Early Career Investigator Program in Earth Science (ECIP-ES) Grant, 2023
¢ Best Oral Presentation Award, SRON Netherlands Science Day, 2019
o INSPIRE Fellowship, Department of Science & Technology (DST), India, 2008

Presentations

Invited Presentations

e AGU Fall Meeting, 2025: “Accurate, low-latency monitoring of whole-atmosphere COs growth
rates with satellite observations.”

e The Methane Emissions Technology Alliance (META), 2026: “Relating multi-scale plume
detection and area estimates of methane emissions.”

« NOAA, 2023: Global growth-rate estimates of COs from satellite observations

« U.S. EPA, 2021: Satellite reveals extreme leakage from a natural gas well blowout

o Indian Institute of Tropical Meteorology (IITM), Pune, India, 2019: Atmospheric moni-
toring using ESA’s TROPOMI satellite

e NASA JPL, 2019: Satellite reveals extreme CH4 leakage from a natural gas well blowout


https://www.linkedin.com/in/sudhanshu-pandey-6877119/
https://science.jpl.nasa.gov/people/sudhanshu-pandey/
https://scholar.google.com/citations?user=efFF_TEAAAAJ&hl=en

NASA GISS, 2018: TROPOMI detection of CH4 leakage from a gas well blowout
NASA JPL, 2018: CH4 monitoring using ESA’s TROPOMI satellite

Selected Conference Presentations

American Geophysical Union (AGU) Fall Meetings: 2015, 2018, 2019, 2021, 2022, 2023 &
2024

European Geosciences Union (EGU) General Assembly: 2017, 2018 & 2019

ESA Living Planet Symposium: 2013 & 2016

International Carbon Dioxide Conference (ICDC): 2017

International Workshop on Greenhouse Gas Measurements from Space (IWGGMS):
2014, 2018, 2021 & 2023

Mentoring and Supervision

Master’s Thesis Project (9 months, full-time): Main supervisor for Dr. Simon van Diepen
(Delft University) and Dr. Maria Tsivilidou (Utrecht University). Co-supervisor for Peter Bijh (Delft
University).

Internship Supervision at JPL: Ansh Tiwari (Caltech), Julia Gao (Caltech), Kayley Butler (USC),
Zijian Qiu (Harvard University), Monica Amezquita (Cal Poly Pomona via JPL’s MSP Program).
Supervised seven university student projects at SRON, Leiden, each lasting between 3-6 months.

Community Service

Reviewer for scientific journals: Nature, Science Advances, Nature Climate Change, Atmospheric
Measurement Techniques, Atmospheric Chemistry and Physics, Carbon Management, Journal of Geo-
physical Research, Remote Sensing of Environment, Environmental Science & Technology, Environ-
mental Research Letters, Geophysical Research Letters, and Remote Sensing.

Review Editor: Frontiers

Proposal Review: Scientific research proposals for NOAA and NASA.

Poster Judge: EGU and AGU annual meetings.

Hosted a remote sensing session at the CEOS-GHG (Paris) 2023 meeting.
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Note: * indicates the paper is under review.
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