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Ph.D. in Physics Aug 2012 – Feb 2017
Utrecht University, Utrecht, The Netherlands
BS-MS in Earth Sciences Jul 2007 – May 2012
Indian Institute of Science Education & Research, Kolkata, India

Research Interests
My research centers on atmospheric chemistry and physics, with a focus on satellite remote sensing
and modeling to advance understanding of the Earth’s carbon cycle. I work on two fronts: space-based
monitoring and improved prediction of carbon-cycle dynamics. Using multi-sensor observations, I develop
quantitative methods and transport-inversion frameworks to estimate emissions from anthropogenic and
natural sources.
• Satellite remote sensing of atmospheric trace gases
• Emission plume detection and quantification
• Atmospheric transport modeling and dispersion
• Bayesian statistics and flux inversions (variational and analytic)
• Machine learning for point-source detection and gridded emissions
• Improving global methane and carbon dioxide growth-rate estimates

Awards and Grants
• NASA ROSES Early Career Investigator Program in Earth Science (ECIP-ES) Grant, 2023
• Best Oral Presentation Award, SRON Netherlands Science Day, 2019
• INSPIRE Fellowship, Department of Science & Technology (DST), India, 2008

Presentations
Invited Presentations
• AGU Fall Meeting, 2025: “Accurate, low-latency monitoring of whole-atmosphere CO2 growth

rates with satellite observations.”
• The Methane Emissions Technology Alliance (META), 2026: “Relating multi-scale plume

detection and area estimates of methane emissions.”
• NOAA, 2023: Global growth-rate estimates of CO2 from satellite observations
• U.S. EPA, 2021: Satellite reveals extreme leakage from a natural gas well blowout
• Indian Institute of Tropical Meteorology (IITM), Pune, India, 2019: Atmospheric moni-

toring using ESA’s TROPOMI satellite
• NASA JPL, 2019: Satellite reveals extreme CH4 leakage from a natural gas well blowout
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• NASA GISS, 2018: TROPOMI detection of CH4 leakage from a gas well blowout
• NASA JPL, 2018: CH4 monitoring using ESA’s TROPOMI satellite

Selected Conference Presentations
• American Geophysical Union (AGU) Fall Meetings: 2015, 2018, 2019, 2021, 2022, 2023 &

2024
• European Geosciences Union (EGU) General Assembly: 2017, 2018 & 2019
• ESA Living Planet Symposium: 2013 & 2016
• International Carbon Dioxide Conference (ICDC): 2017
• International Workshop on Greenhouse Gas Measurements from Space (IWGGMS):

2014, 2018, 2021 & 2023

Mentoring and Supervision
• Master’s Thesis Project (9 months, full-time): Main supervisor for Dr. Simon van Diepen

(Delft University) and Dr. Maria Tsivilidou (Utrecht University). Co-supervisor for Peter Bijh (Delft
University).

• Internship Supervision at JPL: Ansh Tiwari (Caltech), Julia Gao (Caltech), Kayley Butler (USC),
Zijian Qiu (Harvard University), Monica Amezquita (Cal Poly Pomona via JPL’s MSP Program).

• Supervised seven university student projects at SRON, Leiden, each lasting between 3–6 months.

Community Service
• Reviewer for scientific journals: Nature, Science Advances, Nature Climate Change, Atmospheric

Measurement Techniques, Atmospheric Chemistry and Physics, Carbon Management, Journal of Geo-
physical Research, Remote Sensing of Environment, Environmental Science & Technology, Environ-
mental Research Letters, Geophysical Research Letters, and Remote Sensing.

• Review Editor: Frontiers
• Proposal Review: Scientific research proposals for NOAA and NASA.
• Poster Judge: EGU and AGU annual meetings.
• Hosted a remote sensing session at the CEOS-GHG (Paris) 2023 meeting.
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