NASA Logo Jet Propulsion Laboratory California Institute of Technology View the NASA Portal
NASA Banner
NASA Banner
NASA Banner
JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY
NASA Banner
JPL Science
JPL Science Division Home
Planetary Science Planetary Science
Planetary And Exoplanetary Atmospheres (3222)
Geophysics & Planetary Geosciences (3223)
Asteroids, Comets & Satellites (3224)
Planetary Chemistry and Astrobiology (3225)
People
Projects
Planetary Ices (3227)
Astrophysics & Space Sciences Astrophysics & Space Sciences
Earth Science Earth Science
Directorate Science Affiliates Directorate Science Affiliates
Open Postdoc Positions Open Postdoc Positions
Brochures Brochures
 Planetary Chemistry and Astrobiology (3225): People
Michael  Russell's Picture
Address:
Jet Propulsion Laboratory
M/S 183-601
4800 Oak Grove Drive
Pasadena, CA 91109
Phone:
818 354-4985
Fax:
818 393-3037
Email Contact:
Curriculum Vitae:

Michael Russell

Education
  • B.Sc. Honours, Geology with Chemistry, University of London (1963)
  • Ph.D. Mineral Deposit Geochemistry, University of Durham (1974)

Research Interests

The emergence of life in the context of submarine alkaline hydrothermal systems on wet, rocky, sunlit planets.


Professional Experience
  • Jet Propulsion Laboratory (2006 - present)
    • Supervisor, Planetary Chemistry and Astrobiology Group (2013 - 2018)
    • Principal (2016 – present)
    • Research Scientist, Planetary Chemistry and Astrobiology Group (2011 - present)
    • NASA Senior Research Fellow (2005 - 2010)
  • CNRS Professor, University of Grenoble, (2004-2005)
  • Dixon Research Professor, Glasgow University, Scotland (1989-2004)
  • Lecturer, then Professor and HoD, University of Strathclyde, Scotland (1970-1989)

Selected Awards
  • 2018 NASA Exceptional Scientific Achievement Medal
  • 2015 NASA Honours Group Award, Icy Worlds
  • Nature 2009, feature in 459, 316-319 (Whitfield; Nascence Man)
  • William Smith Medal, 2009, Geological Society of London

Selected Publications
  1. Russell, M.J., (2018) Green rust: The simple organizing ‘seed’ of all life? Life, 8, 35; doi:10.3390/life8030035
  2. Branscomb, E., Russell M.J. (2018) Frankenstein or a submarine alkaline vent: Who is responsible for abiogenesis? Part 1: What is life - that it might create itself? BioEssays 40(7) 1700179 https://doi.org/10.1002/bies.201700179
  3. Branscomb, E., Russell M.J. (2018) Frankenstein or a submarine alkaline vent: Who is responsible for abiogenesis? Part 2: As life is now, so it must have been in the beginning. BioEssays 40(8) https://doi.org/10.1002/bies.201700182
  4. Russell, M.J., Hand, K.P., and Murray, A.E. (2017) The possible emergence of life and differentiation of a shallow biosphere on irradiated icy worlds: The example of Europa. Astrobiology 17:1265-1273.
  5. Russell, M.J., and Nitschke, W. (2017) Methane: Fuel or exhaust at the emergence of life. Astrobiology 17:1053-1066.
  6. Russell, M.J. (2017) Life is a verb, not a noun. Geology 45: 1143–1144
  7. Wong, M.L., Charnay, B.D., Gao, P., Yung, Y.L., and Russell, M.J. (2017). Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 17:975-983.
  8. Branscomb, E., Biancalani, T., Goldenfeld, N., and Russell M.J. (2017) Escapement mechanisms and the conversion of disequilibria: The engines of creation. Physics Reports 677:1-60 http://dx.doi.org/10.1016/j.physrep.2017.02.001 .
  9. Shibuya T, Russell, MJ, Takai K. (2016) Free energy distribution and hydrothermal mineral precipitation in Hadean submarine alkaline vent systems; Importance of iron redox reactions under anoxic conditions. Geochimica et Cosmochimica Acta 175, 1-19.
  10. Barge, L.M., Cardoso, S.S.S., Cartwright, J.H.E., Cooper, G.J.T., Cronin, L., De Wit, A., Doloboff, I.J., Escribano, B., Goldstein, R.E., Haudin, F., Jones, D.E.H., Mackay, A.L., Maselko, J., Pagano, J.J., Pantaleone, J., Russell, M.J., Sainz-Díaz, C.I., Steinbock, O., Stone, D.A., Tanimoto, Y., Thomas, L. (2015) From Chemical Gardens to Chemobrionics. Chemical Reviews 115, 8652–8703.
  11. White, L.M., Bhartia, R., Stucky, G.D., Kanik, I., Russell, M.J. (2015) Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life. Earth and Planetary Science Letters, 430, 105–114.
  12. Burcar, B. T., Barge, L. M., Trail, D., Watson, E. B., Russell, M. J., & McGown, L. B. (2015). RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology 15, 509-522.
  13. Barge, L.M., Abedian, Y., Russell, M.J., Doloboff, I.J., Cartwright, J.H.E., Kidd, R.D., Kanik, I. (2015). From chemical gardens to fuel cells: Generation of electrical potential and current across self-assembling iron mineral membranes. Chem. Int. Ed., 54, 8184–8187.
  14. Russell, M.J., Barge, L.M., Bhartia, R., Bocanegra, D., Bracher, P.J., Branscomb, E., Kidd, R., McGlynn, S.E., Meier, D.H., Nitschke, W., Shibuya, T., Vance, S., White, L., & Kanik, I. (2014) The drive to life on wet and icy worlds. Astrobiology 14, 308-343. Link
  15. Shibuya, T., Yoshizaki, M., Masaki, Y., Suzuki, K., Takai, K., & Russell, M. J. (2013). Reactions between basalt and CO2-rich seawater at 250 and 350° C, 500bars: Implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chemical Geology, 359, 1-9. Link
  16. Russell, M.J., Nitschke, W. & Branscomb, E. 2013, The inevitable journey to being. Phil. Trans. R. Soc. Lond. B 368: 20120254. Link
  17. Nitschke, W. & Russell, M.J. (2013) Beating the acetyl coenzyme-A pathway to the origin of life. Phil. Trans. R. Soc. B 368: 20120258. Link
  18. Nitschke, W., McGlynn, S.E., Milner-White, E.J., Russell, M.J., 2013, On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta, BioenergeticsLink
  19. Branscomb, E. & Russell, M.J. 2013, Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim. Biophys. Acta, Bioenergetics 1827, 62-78. 
  20. Schoepp-Cothenet, B., van Lis, R., Atteia, A., Baymann, F., Capowiez, L., Ducluzeau, A-L., Duval, S., ten Brink, F., Russell, M.J. & Nitschke, W. 2013 On the universal core of bioenergetics. Biochim. Biophys. Acta, Bioenergetics, 1827, 79-93. 
  21. Barge, L.M., Doloboff, I.J., White, L.M., Russell, M.J., Kanik, I. 2012, Characterization of Iron-Phosphate-Silicate Chemical Garden Structures. Langmuir, 28, 3714-3721. 
  22. McGlynn, S.E., Kanik, I., Russell, M.J. 2012, Modification of simulated hydrothermal iron sulfide chimneys by RNA and peptides. Philos. Trans. R. Soc. Lond. A Phys. Sci. 370, 3007-3022. 
  23. Schoepp-Cothenet, B., van Lis, R., Philippot, P., Magalon. A., Russell, M.J. and Nitschke, W. (2012). The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Nature Scientific Reports, 2 :263 DOI :10.1038. 
  24. Nitschke, W., Russell, M.J. 2011, Redox bifurcations; how they work and what they mean to extant life and (potentially) to its inorganic roots. BioEssays, 34, 106-109. 
  25. Milner-White, E.J., Russell, M.J. 2011, A peptide era heralding the emergence of life. Genes 2, 671-688.
  26. Mielke, R.E., Robinson, K.J., White, L.M., McGlynn, S.E., McEachern, K., Bhartia, R., Kanik, I., Russell, M.J. 2011, Iron-sulfide-bearing chimneys as potential catalytic energy traps at life's emergence. Astrobiology, 11, 933-950. 
  27. Mielke, R.E., Russell, M.J., Wilson, P.R., McGlynn, S., Coleman, M., Kidd, R. & Kanik, I. 2010, Design, Fabrication and Test of a Hydrothermal Reactor for Origin‐Of‐Life Experiments, Astrobiology, 10, 799-810. 
  28. Russell, M.J., Hall, A.J. and Martin, W. 2010, Serpentinization and its contribution to the energy for the emergence of life. Geobiology, 8, 355-371. 
  29. Nitschke, W. and Russell, M.J. (2010). Just Like the Universe the Emergence of Life had High Enthalpy and Low Entropy Beginnings. Journal of Cosmology, 10, 3200-3216. 
  30. Nitschke, W. and Russell, M.J. 2009, Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. Journal Molecular Evolution 69, 481-496. 

Group Home Page
People in this Group
Group Projects

JPL Privacy Statement Sitemap Contact Site Manager
FIRST GOV NASA Home Page