NASA Logo Jet Propulsion Laboratory California Institute of Technology View the NASA Portal
NASA Banner
NASA Banner
NASA Banner
JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY
NASA Banner
JPL Science
JPL Science Division Home
Planetary Science Planetary Science
Planetary And Exoplanetary Atmospheres (3222)
Geophysics & Planetary Geosciences (3223)
Asteroids, Comets & Satellites (3224)
Planetary Chemistry and Astrobiology (3225)
Planetary Ices (3227)
People
Projects
Astrophysics & Space Sciences Astrophysics & Space Sciences
Earth Science Earth Science
Directorate Science Affiliates Directorate Science Affiliates
Open Postdoc Positions Open Postdoc Positions
Brochures Brochures
 Planetary Ices (3227): People
Mathieu  Choukroun's Picture
Address:
Jet Propulsion Laboratory
M/S 183-601
4800 Oak Grove Drive
Pasadena, CA 91109
Phone:
818.354.4875
Fax:
818.393.4445
Email Contact:
Curriculum Vitae:

Mathieu Choukroun

Dr. Choukroun is a planetary scientist whose primary research aims at better understanding the exchange processes that take place between the interior and the surface (or atmosphere/coma) of icy worlds and comets. This research involves experimental investigation of the physical and chemical properties of icy materials, and thermodynamic and geophysical modeling of icy worlds and cometary environments to apply the experimental results.

Dr. Choukroun uses a range of experimental techniques for this research, including low- to high-pressure cryogenic equipment, optical microscopy, Raman spectroscopy, differential scanning calorimetry, and since recently X-Ray diffraction. He has led or participated in the development of custom instruments dedicated to the measurement of the thermal and mechanical properties of icy materials. Particularly, he focuses on the physical properties of clathrate hydrates (ice-like materials that trap gas in molecular cages), and their implications for outgassing and atmosphere-surface-subsurface exchanges on Titan.

Dr. Choukroun participates in ESA’s Rosetta mission as Deputy Project Scientist for NASA’s contribution to Rosetta and Co-Investigator for the Microwave Instrument on the Rosetta Orbiter (MIRO). He uses thermal and radiative transfer modeling to contribute to the analysis of MIRO data and better understand the properties of the nucleus of 67P/Churyumov-Gerasimenko. He currently leads the development of a new simulation system to measure the thermal and mechanical properties of icy comet analogs and how they evolve under varying insolation conditions.

Dr. Choukroun is also involved in instrument development projects, in particular next-generation submillimeter instruments, and the development of new instrument and mission concepts to comets, Titan, and other icy worlds.

 


Education
  • 2007 Ph.D. in Earth and Planetary Science, Universite de Nantes, France
  • 2004 M.Sc. in Earth Science, Universite Blaise Pascal, Clermont-Ferrand, France
  • 2002 B.Sc. Earth Science, Universite Pierre et Marie Curie, Paris, France

Research Interests
  • Chemical and Physical Properties of Icy Materials
  • Composition, Structure and Dynamics of Icy Satellites
  • Composition, Activity, and Evolution of Comets

Projects

Rosetta Icon Rosetta
The Rosetta mission is designed to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System.


Professional Experience
  • 2016-present Deputy Project Scientist for U.S. contributions to Rosetta
  • 2014-present Co-Investigator on the Microwave Instrument on the Rosetta Orbiter (MIRO)
  • 2010-present Scientist, Jet Propulsion Laboratory
  • 2007-2010 NASA Postdoctoral fellow at Jet Propulsion Laboratory

Community Service
  • Regular Co-convener and Chair of Rosetta sessions at international conferences
  • Regular Co-convener and Chair of Icy Satellites sessions at international conferences
  • Peer-Reviews for international planetary science, astrophysics, scientific instrumentation journals
  • Peer-Reviews (panelist or external) for JPL internal, NASA, and French Agence Nationale de la Recherche proposals

Selected Awards
  • NASA Exceptional Public Achievement Medal, 2017 “for exceptional contributions to our understanding of planetary ices and comets through experimental studies of clathrates and as Deputy Project Scientist for U.S. Rosetta.”
  • JPL Lew Allen Award, 2017 “for pioneering studies of the physical properties of cryogenic materials and contributions to MIRO and the U.S. Rosetta mission.”
  • JPL Voyager Award, 2015
  • NASA Group Achievement Award, 2015 to the U.S. Rosetta Pre-Lander Support Team
  • JPL Discovery Award, 2014
  • NASA postdoctoral Fellowship, 2017-2010

Selected Publications

Clathrate hydrates: physical chemistry and implications for Titan

Munoz-Iglesias, V., Choukroun, M., Vu, T. H., Hodyss, R., Mahjoub, A., Smythe, W. D., Sotin, C. (2018). Phase Diagram of the Ternary Water-Tetrahydrofuran-Ammonia System at Low Temperatures. Implications for Clathrate Hydrates and Outgassing on Titan. ACS Earth and Space Chemistry, 2 (2), 135-146.

Davies A., Sotin C., Choukroun M., Matson D.L., Johnson T.V. (2016). Cryolava flow destabilization of crustal methane clathrate hydrate on Titan. Icarus, 274, 23-32.

Mousis O., Choukroun M., Lunine J.I., Sotin C. (2014). Equilibrium composition between liquid and clathrate reservoirs on Titan. Icarus, 239, 39-45.

Vu T.H., Gloesener E., Choukroun M., Ibourichene A., Hodyss R.P. (2014). Experimental Study on the Effect of Ammonia on the Phase Behavior of Tetrahydrofuran Clathrates. J. Phys. Chem. B, 118, 13371-13377, doi: 10.1021/jp5042487.

Choukroun M., Kieffer S., Lu X., Tobie G. (2013). Clathrate Hydrates: implication for exchange processes in the outer Solar System. In: « Science of Solar System Ices, 3rd Ed. » (S.M. Gudipati and J.C. Castillo-Rogez, Eds), Astrophysics and Space Science Library, 356, pp. 409-454, Springer, New York, NJ.

Choukroun M., Sotin C. (2012). Is Titan’s shape caused by its meteorology and carbon cycle? Geophys. Res. Lett., 39, L04201.

Davies A.G., Sotin C., Castillo-Rogez J., Matson D.L., Johnson T.V., Choukroun M., Baines K.H. (2010). Atmospheric Control of the Cooling Rate of Impact Melts and Cryolavas on Titan’s Surface. Icarus, doi: 10.1016/j.icarus.2010.02.025.

Choukroun M., Grasset O., Tobie G., Sotin C. (2010). Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan. Icarus, 205, 581-593, doi: 10.1016/j.icarus.2009.08.011.

Lunine J.I., Choukroun M., Stevenson D.J., Tobie G. (2009). The Origin and Evolution of Titan. In: Brown, R.H., Lebreton, J.-P., Waite, H. (Eds.), Titan from Cassini-Huygens, Ch. 3, pp. 35-59.

Choukroun M., Morizet Y., Grasset O. (2007). Raman study of methane clathrate hydrates under pressure: New evidence for metastability of structure II. J. Raman Spectrosc., 38, 440-451.

 

Rosetta, Rosetta/MIRO, 67P/Churyumov-Gerasimenko

Taylor, M.G.G.T., Altobelli, N., Buratti, B.J. and Choukroun, M., 2017. The Rosetta mission orbiter science overview: the comet phase. Phil. Trans. R. Soc. A, 375(2097), p.20160262.

Fulle, M., Altobelli, N., Buratti, B., Choukroun, M., Fulchignoni, M., Grün, E., Taylor, M.G.G.T. and Weissman, P., 2016. Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view. Monthly Notices of the Royal Astronomical Society, 462(Suppl_1), pp.S2-S8.

Choukroun M., Keihm S., Schloerb F.P., Gulkis S., Lellouch E., Leyrat C., von Allmen P., Biver N., Bockelee-Morvan D., Crovisier J., Encrenaz P., Ip W. H., Jarchow C., Janssen M., Hartogh P., Hofstadter M., Lee S., Rezac L., Beaudin G., Gaskell R., Jorda L., Keller H. U., Sierks H. (2015) Dark side of 67P/Churyumov-Gerasimenko in Aug.-Oct. 2014 : MIRO/Rosetta continuum observations of polar night in the Southern regions. Astron. Astrophys, 583, A28.

Biver N., Hofstadter M., Gulkis S., Bockelee-Morvan D., Choukroun M., Lellouch E., Schloerb F.P., Rezac L., Ip W.H., Jarchow C., Hartogh P., Lee S., von Allmen P., Crovisier J., Leyrat C., Encrenaz P. (2015). Distribution of water around the nucleus of comet 67P/Churyumov-Gerasimenko at 3.4 AU from the Sun as seen by the MIRO instrument on Rosetta. Astron. Astrophys., 583, A3.

Lee S., von Allmen P., Allen M., Beaudin G., Biver N., Bockelee-Morvan D., Choukroun M., Crovisier J., Encrenaz P., Frerking M., Gulkis S., Hartogh P., Hofstadter M., Ip W.-H., Janssen M., Jarchow C., Keihm S., Lellouch E., Leyrat C., Rezac L., Schloerb F. P., Spilker T., Gaskell R., Jorda L., Keller H.U., Sierks H. (2015). Spatial and diurnal variation of water outgassing on comet 67P Churyumov-Gerasimenko from Rosetta MIRO in August 2014. Astron. Astrophys., 583, A5.

Schloerb F.P., Keihm S., von Allmen P., Choukroun M.,  Lellouch E., Leyrat C., Beaudin G., Biver N., Bockelee-Morvan D., Crovisier J., Encrenaz P., Gaskell R., Gulkis S., Hartogh P., Hofstadter M., Ip W.-H., Janssen M., Jarchow C., Jorda L., Keller H.U., Lee S., Rezac L., Sierks H. (2015). MIRO Observations of subsurface temperatures of the nucleus of 67P/Churyumov-Gerasimenko. Astron. Astrophys., 583, A29.

Gulkis S., Allen M., von Allmen P., Beaudin G., Biver N., Bockelee-Morvan D., Choukroun M., Crovisier J., Davidsson B., Encrenaz P., Encrenaz T., Frerking M., Hartogh H., Hofstadter M., et al. (2015). Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko. Science, 347 (6620), aaa0709, DOI: 10.1126/science.aaa0709.

 

Ice, salts, and others: properties and implications for Icy Worlds

Thomas, E.C., Vu, T.H., Hodyss, R., Johnson, P.V. and Choukroun, M. (2018). Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for the Origin of Ceres’ Bright Spots. Icarus, in press.

Vu, T.H., Hodyss, R., Johnson, P.V. and Choukroun, M., 2017. Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines–Implications for Ceres’ bright spots. Planetary and Space Science, 141, pp.73-77.

Thomas E., Hodyss R., Vu T., Johnson P., Choukroun M. (2017). Composition and evolution of frozen chloride brines under the surface conditions of Europa. ACS Earth Space Chem., 1 (1), 14-23.

Vu, T.H., Hodyss, R., Choukroun, M., & Johnson, P.V. (2016). Chemistry of frozen sodium-magnesium-sulfate-chloride brines : implications for surface expression of Europa’s ocean composition. Astrophys. J. Lett., 816(2), L26.

Cable M.L., Vu T.H., Hodyss R., Choukroun M., Malaska M.J., Beauchamp P.M. (2014). Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan. Geophys. Res. Lett., 41 (15), 5396-5401.

Vu T.H., Cable M.L., Choukroun M., Hodyss R.P., Beauchamp P.M. (2014). Formation of a New Benzene–Ethane Co-Crystalline Structure Under Cryogenic Conditions. J. Phys. Chem. A, 118 (23), 4087-4094.

Vance S.D., Bouffard M., Choukroun M., Sotin C. (2014). Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contat with ice. Planet. Space Sci., 94, 62-70.

Choukroun M., Grasset O. (2010). Thermodynamic data and modeling of the water and water-ammonia phase diagrams for planetary geophysics. J. Chem. Phys., 133, 144502.

Fortes A.D., Choukroun M. (2010). Phase behaviour of ices and hydrates. Space Sci. Rev., 153, 185-218, doi : 10.1007/s11214-010-9633-3.

Sohl F., Choukroun M., Kargel J.S., Kimura J., Pappalardo R., Vance S., Zolotov M. (2010). Subsurface water oceans within icy moons: chemical composition and exchange processes. Space Sci. Rev., 153, 485-510, doi: 10.1007/s11214-010-9646-y.

Choukroun M., Grasset O. (2007). Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. J. Chem. Phys., 127, 124506.

 

See CV for complete list of publications


Group Home Page
People in this Group
Group Projects

JPL Privacy Statement Sitemap Contact Site Manager
FIRST GOV NASA Home Page