Skip Navigation

Neal Turner

Photo of Neal Turner


4800 Oak Grove Drive
M/S 169-506

Pasadena, CA 91109





Member of:

Interstellar and Heliospheric Physics

Group Supervisor


Dr. Turner's research centers on the origins of the planets in the disks of gas and dust orbiting young stars. He uses computer calculations to model the gas flows in the disks, the heating and chemical reactions of the primordial materials, and the concentration of the dust particles leading to the growth of larger solid bodies. The models' appearance is calculated with detailed radiative transfer methods and the results are used to understand the measurements of protostellar disks returned by the Spitzer, Hubble and Herschel Space Telescopes, as well as in planning for future missions such as the James Webb Space Telescope. He has also worked on the outflows from young stars, the compositions of the comets, and the accretion of gas by black holes. He made the first direct numerical calculations of black hole disks to include both the magnetic forces driving accretion and the photon diffusion that cools the gas.


  • Ph.D., Astrophysics, University of California at Santa Cruz (1998)
  • B.Sc. (Hons), Physics, University of Sydney, Australia (1991)

Professional Experience

  • Jet Propulsion Laboratory (2003-Present)
    • Project scientist, Hyperion UV space telescope mission concept
    • Principal investigator, PoZoLE zodiacal light mission concept
    • Deputy PI, FOSSIL interplanetary and interstellar dust mission concept
    • Supervisor, Interstellar & Heliospheric Physics Group (2015-Present)
    • Supervisor, Space & Astrophysical Plasmas Group (2011-2015)
    • Staff Scientist (2005-Present)
    • National Research Council Fellow (2003-2005)
  • Japan Society for the Promotion of Science visiting fellowship, Nagoya University (2015)
  • Humboldt Foundation visiting fellowship, Max Planck Institute for Astronomy (2009-2012)
  • University of California, Santa Barbara, Postdoctoral Research Associate (2002-2003)
  • University of Maryland at College Park, Postdoctoral Research Associate (1999-2002)

Selected Publications

  1. Gas and Dust Dynamics in Starlight-heated Protoplanetary Disks. Flock M., Turner N. J., Nelson R. P., Lyra W., Manger N. & Klahr H. 2020, Astrophys. J. 897:155
  2. Global Hydromagnetic Simulations of Protoplanetary Disks with Stellar Irradiation and Simplified Thermochemistry. Gressel O., Ramsey J. P., Brinch Ch., Nelson R. P., Turner N. J. & Bruderer S. 2020 Astrophys. J. 896:126
  3. X-Ray Ionization of Planet-opened Gaps in Protostellar Disks.  Kim S. Y. & Turner N. J. 2020, Astrophys. J. 889:159
  4. Planet Formation and Migration Near the Silicate Sublimation Front in Protoplanetary Disks.  Flock M., Turner N. J., Mulders G. D., Hasegawa Y., Nelson R. P. & Bitsch B. 2019, Astron. & Astrophys. 630:A147
  5. Fragments from the Origins of the Solar System and our Interstellar Locale (FOSSIL): A Discovery Mission Concept.  Horanyi M., Turner N. J., Alexander C., et al. 2019, EPSC-DPS Abstracts 1202-6
  6. Growth and Settling of Dust Particles in Protoplanetary Nebulae: Implications for Opacity, Thermal Profile, and Gravitational Instability.  Sengupta D., Dodson-Robinson S. E., Hasegawa Y. & Turner N. J. 2019, Astrophys. J. 874:26
  7. Signatures of Young Planets in the Continuum Emission from Protostellar Disks.  Isella A. & Turner N. J. 2018, Astrophys. J. 860:27
  8. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints.  Flock M., Nelson R. P., Turner N. J., et al. 2017, Astrophys. J. 850:131
  9. Surface Roughness of Saturn's Rings and Ring Particles Inferred from Thermal Phase Curves.  Morishima R., Turner N. & Spilker L. 2017, Icarus 295, 74
  10. Protostellar Outflows and Radiative Feedback from Massive Stars.  II. Feedback, Star-formation Efficiency, and Outflow Broadening.  Kuiper R., Turner N. J. & Yorke H. W. 2016, Astrophys. J. 832:40
  11. Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks.  Flock M., Fromang S., Turner N. J. & Benisty M. 2016, Astrophys. J. 827:144
  12. High-temperature Ionization in Protoplanetary Disks.  Desch S. J. & Turner N. J. 2015, Astrophys. J. 811:156
  13. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves. Stauffer J. et al. 2015, Astron. J. 149, 130.
  14. Global Simulations of Protoplanetary Disks With Ohmic Resistivity and Ambipolar Diffusion.  Gressel O., Turner N. J., Nelson R. P. & McNally C. P. 2015, Astrophys. J. 801, 84.
  15. Rossby Wave Instability Does Not Require Sharp Resistivity Gradients.  Lyra W., Turner N. J. & McNally C. P. 2015, Astron. & Astrophys. 574, 10.
  16. Transport and Accretion in Planet-Forming Disks. Turner N. J., Fromang S., Gammie C., Klahr H., Lesur G., Wardle M. & Bai X.-N. 2014, in Protostars and Planets VI, eds. H. Beuther, R. S. Klessen, C. P. Dullemond & Th. Henning, Univ. of Arizona Press, Tucson, pp. 411-432
  17. Herbig Stars' Near-infrared Excess: An Origin in the Protostellar Disk's Magnetically Supported Atmosphere. Turner N. J., Benisty M., Dullemond C. P. & Hirose S. 2014, Astrophys. J. 780, 42.
  18. Global Hydromagnetic Simulations of a Planet Embedded in a Dead Zone: Gap Opening, Gas Accretion, and Formation of a Protoplanetary Jet. Gressel O., Nelson R. P., Turner N. J. & Ziegler U. 2013, Astrophys. J. 779, 59.
  19. Gaps in Protoplanetary Disks as Signatures of Planets. II. Inclined Disks. Jang-Condell H. & Turner N. J. 2013, Astrophys. J. 772, 34.
  20. Protostellar Disk Evolution over Million-Year Timescales with a Prescription for Magnetized Turbulence. Landry R., Dodson-Robinson S. E., Turner N. J. & Abram G. 2013, Astrophys. J. 771, 80.
  21. Magnetized Accretion and Dead Zones in Protostellar Disks. Dzyurkevich N., Turner N. J., Henning Th. & Kley W. 2013, Astrophys. J. 765, 114.
  22. Dead zones as safe havens for planetesimals: influence of disc mass and external magnetic field. Gressel O., Nelson R. P. & Turner N. J. 2012, Mon. Not. Roy. Astron. Soc., 422, 1140.
  23. A Hot Gap around Jupiter's Orbit in the Solar Nebula. Turner N. J., Choukroun M., Castillo-Rogez J. & Bryden G. 2012, Astrophys. J. 748, 92.
  24. Heating and Cooling Protostellar Disks. Hirose S. & Turner N. J., 2011, Astrophys. J. Letters, 732, 188..
  25. Dust Transport in Protostellar Disks Through Turbulence and Settling. Turner N. J., Carballido A. & Sano T. 2010, Astrophys. J., 708, 188.
  26. Dead Zone Accretion Flows in Protostellar Disks. Turner N. J. & Sano T. 2008, Astrophys. J. Letters, 679, 131.
  27. Photon Bubbles in the Circumstellar Envelopes Around Young Massive Stars. Turner N. J., Quataert E. & Yorke H. W. 2007, Astrophys. J., 662, 1052.
  28. Turbulent Mixing in the Outer Solar Nebula. Turner N. J., Willacy K., Bryden G. & Yorke H. W. 2006, Astrophys. J., 639, 1218.
  29. The Effects of Photon Bubble Instability in Radiation-Dominated Accretion Disks. Turner N. J., Blaes O. M., Socrates A., Begelman M. C. & Davis S. W. 2005, Astrophys. J., 624, 267.
  30. On the Vertical Structure of Radiation-Dominated Accretion Disks. Turner N. J. 2004, Astrophys. J. Letters, 605, 45.
  31. 300-580 Nanometer Long-Slit Spectroscopy of Comet Tabur (C/1996 Q1). Turner N. J. & Smith G. H. 1999, Astron. J. 118, 3039
  32. Driving Outflows From Young Stars Through the Effects of Internal Disk Fields. Turner N. J., Bodenheimer P. & Rozyczka M. 1999, Astrophys. J., 524, 129.