Skip Navigation

Neal Turner

Photo of Neal Turner


4800 Oak Grove Drive
M/S 169-506

Pasadena, CA 91109



Member of:

Interstellar and Heliospheric Physics

Group Supervisor


Dr. Turner's research centers on the origins of the planets in the disks of gas and dust orbiting young stars. He uses computer calculations to model the gas flows in the disks, the heating and chemical evolution of the primordial materials, and the concentration of the dust particles leading to the growth of larger solid bodies. He calculates the models' appearance through radiative transfer methods and uses the results to understand the measurements of protostellar disks and planetary systems returned by space telescopes and by interplanetary probes sent to our own solar system's planets, moons, asteroids, and comets, as well as in creating proposals for future space missions.


  • Ph.D., Astrophysics, University of California at Santa Cruz (1998)
  • B.Sc. (Hons), Physics, University of Sydney, Australia (1991)

Professional Experience

  • Jet Propulsion Laboratory (2003-Present)
    • Project scientist, Hyperion UV space telescope mission concept
    • Principal investigator, PoZoLE zodiacal light mission concept
    • Deputy PI, FOSSIL interplanetary and interstellar dust mission concept
    • Supervisor, Interstellar & Heliospheric Physics Group (2015-Present)
    • Supervisor, Space & Astrophysical Plasmas Group (2011-2015)
    • Staff Scientist (2005-Present)
    • National Research Council Fellow (2003-2005)
  • Japan Society for the Promotion of Science visiting fellowship, Nagoya University (2015)
  • Humboldt Foundation visiting fellowship, Max Planck Institute for Astronomy (2009-2012)
  • University of California, Santa Barbara, Postdoctoral Research Associate (2002-2003)
  • University of Maryland at College Park, Postdoctoral Research Associate (1999-2002)

Selected Publications

  1. Dust Rings and Cavities in the Protoplanetary Disks around HD 163296 and DoAr 44. Leiendecker H., Jang-Condell H., Turner N. J. & Myers A. D. 2022, Astrophys. J. 941:172.
  2. Hyperion: The origin of the stars. A far-UV space telescope for high-resolution spectroscopy over wide fields. Hamden E. T., Schiminovich D., Nikzad S., Turner N. J., Burkhart B., Haworth T. J., Hoadley K., et al. 2022, Journal of Astronomical Telescopes, Instruments, and Systems 8:044008.
  3. A global two-layer radiative transfer model for axisymmetric, shadowed protoplanetary disks. Okuzumi S., Ueda T., & Turner N. J. 2022, Publications of the Astron. Soc. of Japan 74, 828.
  4. Comets in Context: Comparing Comet Compositions with Protosolar Nebula Models. Willacy K., Turner N. J., Bonev B., Gibb E., Dello Russo N., DiSanti M., Vervack R. J. Jr. & Roth N., 2022 Astrophys. J. 931:164.
  5. Gas and Dust Dynamics in Starlight-heated Protoplanetary Disks. Flock M., Turner N. J., Nelson R. P., Lyra W., Manger N. & Klahr H. 2020, Astrophys. J. 897:155
  6. Global Hydromagnetic Simulations of Protoplanetary Disks with Stellar Irradiation and Simplified Thermochemistry. Gressel O., Ramsey J. P., Brinch Ch., Nelson R. P., Turner N. J. & Bruderer S. 2020 Astrophys. J. 896:126
  7. X-Ray Ionization of Planet-opened Gaps in Protostellar Disks.  Kim S. Y. & Turner N. J. 2020, Astrophys. J. 889:159
  8. Planet Formation and Migration Near the Silicate Sublimation Front in Protoplanetary Disks.  Flock M., Turner N. J., Mulders G. D., Hasegawa Y., Nelson R. P. & Bitsch B. 2019, Astron. & Astrophys. 630:A147
  9. Fragments from the Origins of the Solar System and our Interstellar Locale (FOSSIL): A Discovery Mission Concept.  Horanyi M., Turner N. J., Alexander C., et al. 2019, EPSC-DPS Abstracts 1202-6
  10. Growth and Settling of Dust Particles in Protoplanetary Nebulae: Implications for Opacity, Thermal Profile, and Gravitational Instability.  Sengupta D., Dodson-Robinson S. E., Hasegawa Y. & Turner N. J. 2019, Astrophys. J. 874:26
  11. Signatures of Young Planets in the Continuum Emission from Protostellar Disks.  Isella A. & Turner N. J. 2018, Astrophys. J. 860:27
  12. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints.  Flock M., Nelson R. P., Turner N. J., et al. 2017, Astrophys. J. 850:131
  13. Surface Roughness of Saturn's Rings and Ring Particles Inferred from Thermal Phase Curves.  Morishima R., Turner N. & Spilker L. 2017, Icarus 295, 74
  14. Protostellar Outflows and Radiative Feedback from Massive Stars.  II. Feedback, Star-formation Efficiency, and Outflow Broadening.  Kuiper R., Turner N. J. & Yorke H. W. 2016, Astrophys. J. 832:40
  15. Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks.  Flock M., Fromang S., Turner N. J. & Benisty M. 2016, Astrophys. J. 827:144
  16. High-temperature Ionization in Protoplanetary Disks.  Desch S. J. & Turner N. J. 2015, Astrophys. J. 811:156
  17. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves. Stauffer J. et al. 2015, Astron. J. 149, 130.
  18. Global Simulations of Protoplanetary Disks With Ohmic Resistivity and Ambipolar Diffusion.  Gressel O., Turner N. J., Nelson R. P. & McNally C. P. 2015, Astrophys. J. 801, 84.
  19. Rossby Wave Instability Does Not Require Sharp Resistivity Gradients.  Lyra W., Turner N. J. & McNally C. P. 2015, Astron. & Astrophys. 574, 10.
  20. Transport and Accretion in Planet-Forming Disks. Turner N. J., Fromang S., Gammie C., Klahr H., Lesur G., Wardle M. & Bai X.-N. 2014, in Protostars and Planets VI, eds. H. Beuther, R. S. Klessen, C. P. Dullemond & Th. Henning, Univ. of Arizona Press, Tucson, pp. 411-432
  21. Herbig Stars' Near-infrared Excess: An Origin in the Protostellar Disk's Magnetically Supported Atmosphere. Turner N. J., Benisty M., Dullemond C. P. & Hirose S. 2014, Astrophys. J. 780, 42.
  22. Global Hydromagnetic Simulations of a Planet Embedded in a Dead Zone: Gap Opening, Gas Accretion, and Formation of a Protoplanetary Jet. Gressel O., Nelson R. P., Turner N. J. & Ziegler U. 2013, Astrophys. J. 779, 59.
  23. Gaps in Protoplanetary Disks as Signatures of Planets. II. Inclined Disks. Jang-Condell H. & Turner N. J. 2013, Astrophys. J. 772, 34.
  24. Protostellar Disk Evolution over Million-Year Timescales with a Prescription for Magnetized Turbulence. Landry R., Dodson-Robinson S. E., Turner N. J. & Abram G. 2013, Astrophys. J. 771, 80.
  25. Magnetized Accretion and Dead Zones in Protostellar Disks. Dzyurkevich N., Turner N. J., Henning Th. & Kley W. 2013, Astrophys. J. 765, 114.
  26. Dead zones as safe havens for planetesimals: influence of disc mass and external magnetic field. Gressel O., Nelson R. P. & Turner N. J. 2012, Mon. Not. Roy. Astron. Soc., 422, 1140.
  27. A Hot Gap around Jupiter's Orbit in the Solar Nebula. Turner N. J., Choukroun M., Castillo-Rogez J. & Bryden G. 2012, Astrophys. J. 748, 92.
  28. Heating and Cooling Protostellar Disks. Hirose S. & Turner N. J., 2011, Astrophys. J. Letters, 732, 188..
  29. Dust Transport in Protostellar Disks Through Turbulence and Settling. Turner N. J., Carballido A. & Sano T. 2010, Astrophys. J., 708, 188.
  30. Dead Zone Accretion Flows in Protostellar Disks. Turner N. J. & Sano T. 2008, Astrophys. J. Letters, 679, 131.
  31. Photon Bubbles in the Circumstellar Envelopes Around Young Massive Stars. Turner N. J., Quataert E. & Yorke H. W. 2007, Astrophys. J., 662, 1052.
  32. Turbulent Mixing in the Outer Solar Nebula. Turner N. J., Willacy K., Bryden G. & Yorke H. W. 2006, Astrophys. J., 639, 1218.
  33. The Effects of Photon Bubble Instability in Radiation-Dominated Accretion Disks. Turner N. J., Blaes O. M., Socrates A., Begelman M. C. & Davis S. W. 2005, Astrophys. J., 624, 267.
  34. On the Vertical Structure of Radiation-Dominated Accretion Disks. Turner N. J. 2004, Astrophys. J. Letters, 605, 45.
  35. 300-580 Nanometer Long-Slit Spectroscopy of Comet Tabur (C/1996 Q1). Turner N. J. & Smith G. H. 1999, Astron. J. 118, 3039.