Skip Navigation

Sylvain Piqueux

Photo of Sylvain Piqueux


4800 Oak Grove Drive
M/S 183-301

Pasadena, CA 91109





Curriculum Vitae:

Click here

Member of:

Planetary And Exoplanetary Atmospheres


Dr. Sylvain Piqueux is a Research Scientist at JPL/Caltech. His work focuses on characterizing planetary surface processes to constrain the geological history of the Solar System, with an emphasis on volatiles at the surfaces of Mars, the Moon, and Europa. He is an expert with thermal infrared data analysis and thermophysical modeling. He is an active science team member of multiple NASA missions, serves as Investigation Scientist for Europa Clipper, and is the PI of several NASA-funded grants. He is also involved with several mission and instrument proposals to the Moon and Mars.


  • Ph.D., Planetary Sciences, Arizona State University, Tempe, AZ (2009)
  • M.S. (DEA), Sedimentary Basins, University of Paris VI, Paris, France (2003)
  • M.S. (Magistére), Geodynamics, Ecole Normale Supérieure, Paris, France (2003)
  • B.S., Geophysics, University of Paris-Saclay, Orsay, France (2002)

Professional Experience

Jet Propulsion Laboratory (2013-present)

  • Europa Clipper E-THEMIS Co-I and Investigation Scientist (2016-present)
  • Mars Reconnaissance Orbiter MCS Co-I (2013-present)
  • InSight
    -Landing Sites Characterization (Thermophysics) (2013-2018)
    -Instrument Site Selection Working Gr. (Thermophysics) (2014-2018)
    -HP3 Science Collaborator (2014-present)
  • Mars Odyssey THEMIS Co-I (2004-present)
  • Mars 2020 Landing Sites Characterization (Thermophysics) (2016-present)
  • Lunar Reconnaissance Orbiter Diviner Science Team Member (2015-2018)
  • Mars Science Laboratory REMS Science Collaborator (2015-2017)
  • Mars Global Surveyor TES Science Collaborator (2004-2006)

Selected Projects

  • Principal Investigator, NASA Solar System Workings, 2019-2022, Comparing Ice-Atmosphere Interaction on Mars, Pluto, and Triton (Science Principal Investigator: Peter Buhler)
  • Principal Investigator, NASA Solar System Workings, 2016-2019, Low Temperature Calorimetry of Meteorites and Geological Samples
  • Principal Investigator, JPL Lew Allen Award, 2018, Optimizing the numerical performance of a planetary thermal model
  • Principal Investigator, NASA Planetary Data Archiving, Restoration, and Tools, 2016-2019, Planetary Thermal Model Development
  • Co-Investigator, JPL Critical Data Product, 2016-2019, Mars 2020 Landing Site Characterization (Thermophysics)
  • Principal Investigator, JPL Critical Data Product, 2016-2018, InSight Landing Site Characterization (Thermophysics)
  • Principal Investigator, NASA Mars Data Analysis, 2015-2018, Surface Dust Flux on Mars
  • Science Principal Investigator, NASA Mars Fundamental Research, 2010-2013, Thermal conductivity measurements of fines under Martian conditions
  • Science Principal Investigator, NASA Mars Fundamental Research, 2007-2010, Thermal conductivity measurements of fines under Martian conditions
  • Principal Investigator, JPL Critical Data Product, 2006, Phoenix Landing Site Monitoring with THEMIS

Community Service

  • Lectures at local schools (Altadena Arts Magnet Elementary School, Lycée International de Los Angeles in Pasadena)

Research Interests

  • Thermophysical properties of planetary surfaces
  • Polar and ice-related processes
  • Atmosphere/surface interactions

Selected Awards

  • NASA Group Achievement Awards x3 (2018, 2020)
  • NASA Early Career Public Achievement Award (2018)
  • Lew Allen award, JPL (2017)
  • Voyager award, JPL (2016)
  • Antarctica Service Medal, DoD, (2012)
  • Merit Prize, University of Paris VI (2002)

Selected Publications

  1. Bapst, J., Piqueux, S., Edwards, C.S., Wolfe, C., Hayne, P.O., Kass, D.M., Kleinböhl, A, (2023), Surface Dust Redistribution on Mars From Interannual Differences in Temperature and Albedo, J. Geophys. Res., 127,12, doi:10.1029/2022JE007365
  2. Spohn, T., + 33 colleagues, (2023), The InSight HP3 Penetrator (Mole) on Mars: Soil Properties Derived from the Penetration Attempts and Related Activities, Space Sci. Rev., 218,8,doi: 10.1007/s11214-022-00941-z
  3. Weintraub, A.R., Edwards, C.S. Chojnacki, M., Edgar, L.A. ; Fenton, L.K., Piqueux, S., Gullikson, A.L., (2022), Thermophysical and Compositional Properties of Paleobedforms on Mars, J. Geophys. Res., 127,8, doi:10.1029/2022JE007345
  4. Daubar, I., + 17 colleagues, (2022), New Craters on Mars: An Updated Catalog, J. Geophys. Res., 127,7, doi:10.1029/2021JE007145
  5. Lange, L., + 11 colleagues, (2022), InSight Pressure Data Recalibration, and its Application to the Study of Long-Term Pressure Changes on Mars, J. Geophys. Res., accepted.
  6. Lange, L., Piqueux, S., and C. Edwards, (2022), Gardening of the Martian Regolith by Diurnal CO2 Frost and the Formation of Slope Streaks, J. Geophys. Res., 127, 4, doi: 10.1029/2021JE006988
  7. Piqueux, S., + 19 colleagues, (2021), Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements, J. Geophys. Res., 126, 8, doi: DOI10.1029/2021JE006859.
  8. Müller, N., Piqueux, S., + 16 colleagues, (2021), Near Surface Properties of Martian Regolith Derived From InSight HP3-RAD Temperature Observations During Phobos Transits, Geophys. Res. Lett., 48, 15, doi: DOI10.1029/2021GL093542.
  9. Piqueux, S., Vu, T.H., Bapst, J., Garvie, L.A.J., Choukroun, M., Edwards, C.S., (2021), Specific Heat Capacity Measurements of Selected Meteorites for Planetary Surface Temperature Modeling, J. Geophys. Res., 126, 11, doi: DOI10.1029/2021JE007003.
  10. Grott, M., + 16 colleagues, (2021), Thermal Conductivity of the Martian Soil at the InSight Landing Site From HP3 Active Heating Experiments, J. Geophys. Res., 126, 7, doi: DOI10.1029/2021JE006861.
  11. Ahern, A.A., Rogers, A.D., Edwards, C.S., Piqueux, S., (2021), Thermophysical Properties and Surface Heterogeneity of Landing Sites on Mars From Overlapping Thermal Emission Imaging System (THEMIS) Observations, J. Geophys. Res., 126, 8, doi: DOI10.1029/2020JE006713.
  12. Buhler, P.B., and S. Piqueux, (2021), Obliquity-Driven CO2 Exchange Between Mars' Atmosphere, Regolith, and Polar Cap, J. Geophys. Res., 126, 5, doi: DOI10.1029/2020JE006759.
  13. Diniega S., + 18 colleagues, (2021), Modern Mars’ geomorphological activity, driven by wind, frost, and gravity, Geomorphology, 380, 107627, doi: 10.1016/j.geomorph.2021.107627.
  14. Golombek, M., et al., (2020), Geology of the InSight Landing Site on Mars, Nature Com., doi:10.1038/s41467-020-14679-1
  15. Piqueux, S., Buz, J., Edwards, C.S., Bandfield, J.L., Kleinböhl, A., Kass, A.M., Hayne, P.O., and the MCS and THEMIS teams, (2019), Widespread Shallow Water Ice on Mars at High and Mid Latitudes, GRL, 46, 24, 14,290-14,298, doi:10.1029/2019GL083947.
  16. Heavens, N. G., Kass, D. M., Shirley, J. H., Piqueux, S., Cantor, B. A., (2019), An Observational Overview of Dusty Deep Convection in Martian Dust Storms, J. Atm. Sci., 76, 11, 3299-3326, doi: 10.1175/JAS-D-19-0042.1
  17. Buhler, P. B., Ingersoll, A. P., Piqueux, S., Ehlmann, B. L., Hayne, P. O., (2019), Coevolution of Mars's atmosphere and massive south polar CO2 ice deposit, Nature Astron., 10.1038/s41550-019-0976-8.
  18. Mischna, A.. M. and S. Piqueux, (2019), The Role of Atmospheric Pressure on Mars Surface Properties and Early Mars Climate Modeling, Icarus, doi:10.1016/j.icarus.2019.113496.
  19. Vu, T. H., Piqueux, S., Choukroun, M., Edwards, C.S., Chritensen, P.R., Glotch, T.D., (2019), Low-temperature specific heat capacity measurements and application to Mars thermal modeling, Icarus, 321, 824-840, doi: 10.1016/j.icarus.2018.10.004.
  20. Morgan, P., Grott, M., Knapmeyer-Endrun, B., Golombek., M., Delage, P., Loignonne, P., Piqueux, S., + 10 colleagues, (2018), A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site, Space Sci. Rev., 214, 6, UNSP 104.
  21. Golombek, M., + 45 colleagues, (2018), Geology and Physical Properties Investigations by the InSight Lander, Space Sci. Rev., 214, 5, UNSP 84.
  22. Smith, I., Diniega, S., Beaty, D., Thorsteinssan, T., Becerra, P., Bramson, A., Clifford, S., Hvidberg, C. Portyankina, C., Piqueux, S., Spiga, A., Titus, T., (2018), 6th international conference on Mars polar science and exploration: Conference summary and five top questions, Icarus, 308, 2-14, doi:  10.1016/j.icarus.2017.06.027.
  23. Edwards, C., Piqueux, S., Hamilton, V., Fergason, R., Herkenhoff, K., Vasavada, A., Bennett, K., Sacks, L., Lewis, K., Smith, M., (2018), The Thermophysical Properties of the Bagnold Dunes, Mars: Ground-Truthing Orbital Data, J. Geophys. Res., 123, 5, 1307-1326, doi:10.1029/2017JE005501.
  24. Heavens, N., Kleinböhl, A., Chaffin, M., Halekas, J.S., Kass, D.M., Hayne, P.O., McCleese, D.J., Piqueux, S., Shirley, J.H., and J.T. Schofield, Enhanced hydrogen escape from Mars’s atmosphere because of deep convection in dust storm (2018), Nature Astronomy, 2, 2, 126-132, doi: 10.1038/s41550-017-0353-4.
  25. Golombek, M., Kipp, D., Daubar, I.J., Fergason, R., Kirk, R.L., Beyer, R., Huertas, A., Piqueux, S., + 26 colleagues, (2017), Selection of the InSight Landing Site, Space Sci. Rev., 211,1-4,5-95, doi:
  26. Siegler, M.A., Smekar, S.E., Grott, M., Piqueux, S., Mueller, N., Williams, J.-P., Plesa, A.-C., Spohn, T., (2017), The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment, Space Sci. Rev., 211,1-4,259-275, doi:
  27. Schaible, M., Johnson, R., Zhigilei, Z., Piqueux, S., (2017), High energy electron sintering of icy regolith: formation of the PacMan anomalies at Saturn, Icarus285, 211-223, doi: 10.1016/j.icarus.2016.08.033.
  28. Vasavada, A. R., S. Piqueux, K. W. Lewis, M. T. Lemmon, M. D. Smith, (2017), Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor, Icarus284, 372-386, doi:&nbsp10.1016/j.icarus.2016.11.035
  29. Piqueux, S., Kleinböhl, A., Hayne, P., Heavens, N., Kass, D., McCleese, D., Schofield, J., Shirley, J., (2016), Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars, J. Geophys. Res.121, 1174-1189, doi:10.1002/2016JE005034.
  30. Edwards, C., Piqueux, S., The Water Content of Recurring Slope Lineae on Mars, (2016), Geophys. Res. Let.43, 8912-8919, doi:10.1002/2016GL070179.
  31. Plesa, A., Grott, M., Piqueux, S., Sielger, Interannual Variability of the Martian Surface Planetary Heat Flow Due to Dust Loading of the Atmosphere, (2016), J. Geophys. Res.121, 2166-2175, doi:10.1002/2016JE005127.
  32. Piqueux, S., Byrne, S., Titus, Timothy, Hansen, Candice, Kieffer H., (2015), Enumeration of Mars Years since the Beginning of the Telescopic Exploration, Icarus251, 332-338.
  33. Heavens, N., Cantor, B., Hayne, P., Kass, D., Kleinboehl, K., McCleese., D., Piqueux, S., Schofield, J., Shirley J., (2015), Extreme Detached Dust Layers near Martian Volcanoes: Evidence for Dust Transport by Mesoscale Circulations Forced by High Topography, Geophys. Res. Let., 42, 10, 3730-37-38, doi: 10.1002/2015GL064004.
  34. Piqueux, S., Kleinböhl, A., McCleese, D., Hayne, P., Schofield, T., Kass, D., (2015), Variability of the martian seasonal CO2 cap extent over eight mars years, Icarus, 251, 164-180 doi: 10.1016/j.icarus.2014.10.045.
  35. Brown, A., Piqueux, S., Titus, T., (2014), A H2O ice cycle on the CO2 ice south polar cap of Mars, Earth Plan. Sci. Let.406, 102-109, doi: 10.1016/j.epsl.2014.08.039.
  36. Piqueux, S., and P.R. Christensen, (2012), Visible and thermal infrared observations of the Martian surface during three Phobos shadow transits, Geophys. Res. Let., doi:10.1029/2012GL053352.
  37. Piqueux, S., and P.R. Christensen (2011), Temperature-dependent thermal inertia of homogeneous Martian regolith, J. Geophys. Res.116, E7, doi:10.1029/2011JE003805.
  38. Piqueux, S., and P. R. Christensen (2009), A model of thermal conductivity for planetary soils: 1. Theory for unconsolidated soils, J. Geophys. Res.114, E9, doi:10.1029/2008JE003308.
  39. Piqueux, S., and P.R. Christensen (2009), A model of thermal conductivity for planetary soils: 2. Theory for cemented soils, J. Geophys. Res.114, E9, doi:10.1029/2008JE003309.
  40. Piqueux, S., C.S. Edwards, and P.R. Christensen (2008), Distribution of the ices exposed near the south pole of Mars using Thermal Emission Imaging System (THEMIS) temperature measurements, J. Geophys. Res.113, E8, doi:10.1029/2007JE003055.
  41. Piqueux, S., and P. R. Christensen (2008), North and south sub-ice gas flow and venting of the seasonal caps of Mars: A major geomorphological agent, J. Geophys. Res.113, E6, doi:10.1029/2007JE00 3009.