NASA Logo Jet Propulsion Laboratory California Institute of Technology View the NASA Portal
NASA Banner
NASA Banner
NASA Banner
JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY
NASA Banner
JPL Science
JPL Science Division Home
Planetary Science Planetary Science
Astrophysics & Space Sciences Astrophysics & Space Sciences
Earth Science Earth Science
Center for Climate Sciences (3292)
Earth Surface And Interior (329A)
Ocean Circulation And Air Sea Interaction (329B)
Sea Level And Ice (329C)
Stratosphere And Upper Troposphere (329D)
Atmospheric Physics And Weather (329E)
Terrestrial Hydrology (329F)
Carbon Cycle And Ecosystems (329G)
People
Projects
Laboratory Studies And Atmospheric Observations (329H)
Tropospheric Composition (329I)
Aerosols And Clouds (329J)
Directorate Science Affiliates Directorate Science Affiliates
Open Postdoc Positions Open Postdoc Positions
Brochures Brochures
 Carbon Cycle And Ecosystems (329G): People
Glynn  Hulley's Picture
Address:
Jet Propulsion Laboratory
M/S 183-509
4800 Oak Grove Drive
Pasadena, CA 91109
Phone:
818.354.2979
Fax:
818.354.5148
Email Contact:
Curriculum Vitae:

Glynn Hulley

Dr. Glynn Hulley is a member of the Carbon Cycle and Ecosystems group at the Jet Propulsion Laboratory. His research is focused on improving our understanding of Earth surface properties, ecosystem and hydrological processes. Glynn is an expert on thermal infrared spectroscopy, and is a member of several instrument and product development teams including ECOSTRESS, ASTER, MODIS, VIIRS, and Landsat. A key aspect of Glynn's research is the development of new techniques to analyze and extract land surface temperature and emissivity (LST&E) from thermal remotely sensed data. Techniques and algorithms developed by Glynn have been incorporated into commercial packages by NASA and are widely used by researchers, for example the ASTER GEDv3, NASA MOD21 and VNP21 LST&E and MEaSUREs LST&E products. Using these LS&E products he is currently leading a study to investigate warming trends and heat wave characteristics in large urban centers in the USA.

He is currently the Level-2 thermal infrared lead for the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), which will offer clues about how Earth's water and carbon cycles affect plant growth and how ecosystems adapt to changes in climate by measuring the loss of water from leaves and soil over the diurnal cycle. He has also worked extensively with a new airborne Hyperspectral Thermal Emission Spectrometer (HyTES) developed at JPL in an effort to develop algorithms and science objectives for the thermal infrared sensor on the HyspIRI Satellite Mission recommended by the National Research Council (NRC) Decadal Survey for Earth Science.


Education
  • B.Sc. in Computational Physics and Mathematics, Francis Marion University, magna cum laude (2001)
  • M.Sci. in Atmospheric Physics, University of Maryland Baltimore County (2004)
  • Ph.D. in Atmospheric Physics, University of Maryland Baltimore County (2007)

Research Interests
  • Thermal infrared remote sensing of surface properties
  • Land Surface Temperature and Emissivity retrieval algorithms
  • Surface Urban Heat Island (SUHI) effects and heat wave trend characteristics
  • Detection and mapping of anthropogenic methane and other trace gas sources

Projects

AIRS Icon AIRS
The Atmospheric Infrared Sounder, AIRS, is an instrument whose goal is to support climate research and improved weather forecasting.

ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) Icon ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station)
The ECOsystem Spaceborne Thermal Radiometer on Space Station (ECOSTRESS) mission will study how the worlds ecosystems use water..

HyTES Icon HyTES
The Hyperspectral Thermal Emission Spectrometer

HyspIRI Mission Study Icon HyspIRI Mission Study
The Hyperspectral Infrared Imager or HyspIRI mission will study the worlds ecosystems and provide critical information on natural disasters.

MODIS/ASTER (MASTER) Icon MODIS/ASTER (MASTER)
The MODIS/ASTER (MASTER) airborne simulator is a joint development involving the Airborne Sensor Facility at the Ames Research Center, the Jet Propulsion Laboratory and the EROS Data Center.


Professional Experience
  • NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (2007-present)
    • Research Scientist III (2010-present)
    • Post-Doctoral Research Scholar (2007-2010)
  • Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD (2003-2007)
    • Graduate Research Assistant (2003-2007)

Selected Awards
  • NASA Early Career Achievement Medal, September (2014)
  • JPL Team Award, algorithm development and near-real time processing of data from the second Hyperspectral Thermal Emission Spectrometer (HyTES) Science campaign, August (2014)
  • JPL Team Award, successful first deployment of the airborne Hyperspectral Thermal Emission Spectrometer (HyTES), (2012)
  • Outstanding Student Paper Award, AGU (2006)
  • Physics Award for Best Student (2001)
  • Presidents List of Distinguished Students (1998-2001)

Selected Publications
  1. Malakar, N. K., G. C. Hulley, K. Laraby, Cook, M., S. Hook, J. Schott, (2018), Methodology and Validation of an Operational Land Surface Temperature Product for Landsat Thermal Data, IEEE TGRS, In Press.
  2. Hulley, G. C., Malakar, N., Islam, T., Freepartner, R, (2017), NASA's MODIS and VIIRS Land Surface Temperature and Emissivity Products: A Consistent and High Quality Earth System Data Record, IEEE TGRS, DOI: 10.1109/JSTARS.2017.2779330.
  3. Hook, S.J., G. C. Hulley, W.R. Johnson, B. Eng, J. Mihaly, S. Chazanoff, N. Vance, Z. Staniszewski, G. Rivera, K.T. Holmes and P. Guillevic, (2016), The Hyperspectral Thermal Emission Spectrometer (HyTES) - A New Hyperspectral Thermal Infrared Airborne Imager for Earth Science, Rem. Sens. Environ., in press.
  4. Kuai, L., J.R. Worden, K. Li, G. C. Hulley, F.M. Hopkins, C.E. Miller, S.J. Hooks, R.M. Duren, A.D. Aubrey (2016), Characterization of anthropogenic methane plumes with the Hyperspectral Thermal Emission Spectrometer (HyTES): a retrieval method and error analysis, Atmos. Meas. Tech., 9, 3165-3173
  5. Frankenberg, F., A.K. Thorpe, D.R. Thompson, G. Hulley, E.A. Kort, N. Vance, J. Borchardt, T. Krings, K. Gerilowski, C. Sweeney, S. Conley, B.D. Bue, A.D. Aubrey, S. Hook, R.O. Green, (2016), Airborne methane remote measurements reveal heavytail flux distribution in Four Corners region, Proc. Natl. Acad. Sci., 113 (35), 9734-9739
  6. T. Islam, G. C. Hulley, N. Malakar, R. Radocinski, S. Hook (2016), A physics-based algorithm for the simultaneous retrieval of land surface temperature and emissivity from VIIRS thermal infrared data, IEEE TGARS, in review
  7. Malakar, N.K., and G. C. Hulley, (2016), A Water Vapor Scaling Model for Improved Land Surface Temperature and Emissivity Separation of MODIS Thermal Infrared Data, Remote Sensing of Environment, 2016, DOI: 10.1016/j.rse.2016.04.023
  8. Hulley, G. C., Duren, R. M., Hopkins, F. M., Hook, S. J., Vance, N., Guillevic, P., Johnson, W. R., Eng, B. T., Mihaly, J. M., Jovanovic, V. M., Chazanoff, S. L., Staniszewski, Z. K., Kuai, L., Worden, J., Frankenberg, C., Rivera, G., Aubrey, A. D., Miller, C. E., Malakar, N. K., Sánchez Tomás, J. M., and Holmes, K. T.: High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES), Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-8, in press, 2016.
  9. Hulley, G., Hook S.J, Abbott, E., Malakar, N., Islam, T., Abrams, M., (2015), The ASTER Global Emissivity Database (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial resolution, Geophysical Research Letters, 42, doi:10.1002/2015GL065564.
  10. Hochberg, E. J., Roberts, D.A., Dennison, P.E, Hulley, G.C., (2015), Special issue on the Hyperspectral Infrared Imager (HyspIRI): Emerging Science in terrestrial and aquatic ecology, radiation balance and hazards, Rem. Sens. Environ., 167 (1-5)
  11. Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T.  (2015), The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products, Int. Journal of Applied Earth Observation and Geoinformation, 38 (202-301).
  12. Guillevic, P. C., Biard, J., Hulley, G. C., Privette, J. L., Hook, S. J., Olioso, A., Göttsche, F.-M., Radocinski, R., Román, M. O., Yu, Y., and Csiszar I. (2014). Validation of Land Surface Temperature products derived from the Visible Infrared Imager Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, 154 (2014) 19–37, doi: 10.1016/j.rse.2014.08.013.
  13. Hulley, G., S. Veraverbeke, S. Hook, (2014), Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21), Rem. Sens. Environ, 140, p755-765
  14. Guillevic, P.C., Bork-Unkelbach, A., Gottsche, F.M., Hulley, G., Gastellu-Etchegorry, J.P., Olesen, F.S., & Privette, J.L. (2013). Directional Viewing Effects on Satellite Land Surface Temperature Products Over Sparse Vegetation Canopies-A Multisensor Analysis. IEEE Geoscience and Remote Sensing Letters, 10, 1464-1468
  15. Hulley, G. C., T. Hughes, and S. J. Hook (2012), Quantifying Uncertainties in Land Surface Temperature (LST) and Emissivity Retrievals from ASTER and MODIS Thermal Infrared Data, J. Geophys. Res. Lett, 117, D23113, doi:10.1029/2012JD018506.
  16. Hulley, G. C., and S. J. Hook (2012), A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product, J. Geophys. Res. Lett, 117, D20117, doi:10.1029/2012JD019102.
  17. Göttsche, F. M., and G. C. Hulley, (2012), Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region, Rem. Sens. Environ., 124, 149-158.
  18. Veraverbeke, S., S. Hook and G. Hulley, (2012), An alternative spectral index for rapid fire severity assessments, Rem. Sens. Environ., 123, 72-80.
  19. Hulley, G.C., S.J. Hook & P. Schneider, (2011), Optimized split-window coefficients for deriving surface temperatures from inland water bodies, Remote Sensing of Environment, 115, 3758-3769
  20. Hulley, G.  C., and S. J. Hook, (2010), Generating Consistent Land Surface Temperature and Emissivity  Products Between ASTER  and MODIS Data  for Earth Science Research, IEEE Trans. Geos.  Rem.  Sens., DOI: 10.1109/TGRS.2010.2063034.
  21. Hulley, G.  C.,  S. J. Hook, and A. M. Baldridge, (2010), Investigating the Effects of Soil Moisture  on Thermal Infrared  Land  Surface  Temperature and  Emissiv- ity Using Satellite  Retrievals  and Laboratory Measurements, Remote  Sensing of Environment, 114, 1480-1493.
  22. Schneider,  P.,  S. J.  Hook, R. G. Radocinski,  G. K. Corlett, G.  C.  Hulley,  S. G. Schladow,  and  T. E. Steissberg, (2009),  Satellite  observations indicate  rapid warming  trend  for lakes  in  California  and  Nevada,  Geophys.   Res.    Lett.,  36, L22402, doi:10.1029/2009GL040846
  23. Hulley, G.  C.,  S. J.  Hook, E. Manning,  S-Y Lee, and  E. Fetzer,  (2009),  Validation  of the  Atmospheric Infrared  Sounder  (AIRS)  Version  5 Land  Surface Emissivity  Product over the  Namib  and  Kalahari Deserts,  Journal of Geophys. Res.  Atmos.,  114, D19104.
  24. Hulley, G.  C.,  S. J. Hook, and A. M. Baldridge,  (2009), Validation of the North American  ASTER Land Surface  Emissivity  Database (NAALSED)  version  2.0 using pseudo-invariant sand dune sites, Remote Sens. Environ,  113, 2224-2233
  25. Hulley,  G.   C.,   and  S.  J.  Hook  (2009),  The  North  American   ASTER  Land Surface  Emissivity  Database (NAALSED)  Version  2.0, Remote Sens. Environ, 113, 1967-1975
  26. Hulley, G.  C.,  and S. J. Hook (2009), Intercomparison of versions 4, 4.1 and 5 of the  MODIS Land  Surface Temperature and  Emissivity  Products and  validation with laboratory measurements of sand samples from the Namib desert,  Namibia, Remote  Sens.  Environ,  113, 1313-1318
  27. Hulley, G.,  S. J.  Hook, (2008),  ASTER  Land  Surface  Emissivity  Database of California and Nevada, Geophys.  Res.  Lett., 35, L13401, doi:10.1029/2008GL034507
  28. Hulley, G.,  S. J.  Hook, (2008),  A New Methodology  for Cloud  Detection  and Classification  with  Advanced  Spaceborne  Thermal Emission  and  Reflection  Ra- diometer (ASTER) Data,  Geophys.  Res.  Lett., 35, L16812, doi:10.1029/2008GL034664

Group Home Page
People in this Group
Group Projects

JPL Privacy Statement Sitemap Contact Site Manager
FIRST GOV NASA Home Page