Skip Navigation

Brendan Byrne

Photo of Brendan Byrne


4800 Oak Grove Drive
M/S 233-200

Pasadena, CA 91109

Curriculum Vitae:

Click here

Member of:

Carbon Cycle And Ecosystems

Employed By



"My research interests are centered around improving our mechanistic understanding of the terrestrial carbon cycle. I approach this problem using large observational datasets, in particular, much of my research has employed chemical transport models and data assimilation methods to infer net biosphere-atmosphere carbon fluxes from measurements of atmospheric CO2. I use these constraints, in combination with complementary datasets of vegetation function (e.g., solar induced fluorescence) and environmental variables (e.g., temperature and moisture reanalysis) to investigate the relationship between climate (and climate variability) and the carbon cycle of terrestrial ecosystems."


  • PhD in Physics, University of Toronto
  • Msc in Earth and Ocean Sciences, University of Victoria
  • Bsc in Physics and Ocean Sciences, University of Victoria

Professional Experience

  • Scientist, Jet Propulsion Laboratory (2022 - present)
  • JPL Postdoctoral Fellow, Jet Propulsion Laboratory (2020 - 2022)
  • NASA Postdoctoral Fellow, Jet Propulsion Laboratory (2018 - 2020)

Research Interests

carbon cycle, data assimilation, remote sensing, terrestrial biosphere modeling

Selected Publications

  1. Byrne, B., Liu, J., Yi, Y., Chatterjee, A., Basu, S., Cheng, R., Doughty, R., Chevallier, F., Bowman, K. W., Parazoo, N. C., Crisp, D., Li, X., Xiao, J., Sitch, S., Guenet, B., Deng, F., Johnson, M. S., Philip, S., McGuire, P. C., and Miller, C. E. (2022). Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia, Biogeosciences, 19, 4779–4799,
  2. He, L., B. Byrne, Y. Yin, J. Liu, C. Frankenberg (2022). Remote-sensing derived trends in gross primary production explain increases in the CO2 seasonal cycle amplitude. Global Biogeochem. Cy., 36, e2021GB007220.
  3. Schuh, A.E., Byrne, B., Jacobson, A.R. et al. On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink. Nature 603, E13–E14 (2022).
  4. Worden, J., D. Cusworth, Z. Qu, Y. Yin, Y. Zhang, A. A. Bloom, S. Ma, B. Byrne, T. Scarpelli, J. D. Maasakkers, D. Crisp, R. Duren, and D. J. Jacob (2021) The 2019 Methane Budget And Uncertainties At 1 Degree Resolution And Each Country Through Bayesian Integration Of GOSAT Total Column Methane Data And A Priori Inventory Estimates, Atmos. Chem. Phys., 22, 6811–6841,, 2022
  5. He, W., F. Jiang, M. Wu, W. Ju, M. Scholze, Z. Chen, B. Byrne et al. (2022). China’s Terrestrial Carbon Sink over 2010–2015 Constrained by Satellite Observations of Atmospheric CO2 and Land Surface Variables. J. Geophys. Res. Biogeo.
  6. Byrne, B., Liu, J., Lee, M., Yin, Y., Bowman, K. W., Miyazaki, K., Norton, A. J., Joiner, J., Pollard, D. F., Griffith, D. W. T., Velazco, V. A., Deutscher, N. M., Jones, N. B., and Paton-Walsh, C. (2021). The carbon cycle of southeast Australia during 2019–2020: Drought, fires, and subsequent recovery. AGU Advances, 2, e2021AV000469.
  7. Frankenberg, C., Y. Yin, B. Byrne, L. He and P. Gentine (2021). Comment on “Recent global decline of CO2 fertilization effects onvegetation photosynthesis”, Science Technical Comment
  8. You, Y., B. Byrne, O. Colebatch, R. L. Mittermeier, F. Vogel, and K. Strong (2021) Quantifying the Impact of the COVID-19 Pandemic Restrictions on CO, CO2, and CH4 in Downtown Toronto Using Open-Path Fourier Transform Spectroscopy. Atmosphere. 2021; 12(7):848.
  9. Byrne, B., J. Liu, A. A. Bloom, K. W. Bowman, Z. Butterfield, J. Joiner, T. F. Keenan, G. Keppel-Aleks, N. C. Parazoo, and Y. Yin (2020) Contrasting regional carbon cycle responses to seasonal climate anomalies across the east-west divide of temperate North America, Global Biogeochem. Cy., 34, e2020GB006598.
  10. Byrne, B., J. Liu, M. Lee, I. Baker, K. W. Bowman, N. M. Deutscher, D. G. Feist, D. W. T. Griffith, L. T. Iraci, M. Kiel, J. S. Kimball, C. E. Miller, I. Morino, N. C. Parazoo, C. Petri, C. M. Roehl, M. K. Sha, K. Strong, V. A. Velazco, P. O. Wennberg, and D. Wunch (2020). Improved constraints on northern extratropical CO2 fluxes obtained by combining surface-based and space-based atmospheric CO2 measurements. J. Geophys. Res. Atmos., 125,
  11. Yin, Y., Byrne, B., Liu, J., Wennberg, P.,Davis, K. J., Magney, T., Köhler, P., He, L., Jeyaram, R., Humphrey, V., Gerken, T., Feng, S., Digangi, J. P., Frankenberg, C. (2020). Cropland carbon uptake delayed and reduced by 2019 Midwest floods. AGU Advances, 1, e2019AV000140.
  12. Byrne, B., Strong,K., Colebatch, O., You, Y., Wunch, D., Ars, S., Jones, D. B. A., Fogal, P., Mittermeier, R. L., Worthy, D. & Griffith, D. W. T. (2020). Monitoring Urban Greenhouse Gases Using Open-Path Fourier Transform Spectroscopy, Atmosphere-Ocean,
  13. Byrne, B., Jones, D. B. A., Strong, K., Polavarapu, S. M., Harper, A. B., Baker, D. F., and Maksyutov, S. (2019). On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?, Atmos. Chem. Phys., 19, 13017-13035,
  14. Byrne, B., D. Wunch, D. B. A. Jones, K. Strong, F. Deng, I. Baker, P. Köehler, C. Frankenberg, J. Joiner, V. K. Arora, B. Badawy, A. Harper, T. Warneke, C. Petri, R. Kivi, and C. M. Roehl, Evaluating GPP and respiration estimates over northern midlatitude ecosystems using solar induced fluorescence and atmospheric CO2 measurements, J. Geophys. Res. Biogeo., 123,
  15. Polavarapu, S. M., Deng, F., Byrne, B., Jones, D. B. A., and Neish, M., (2018) A comparison of atmospheric CO2 flux signals obtained from GEOS-Chem flux inversions constrained by in situ or GOSAT observations, Atmos. Chem. Phys., 8, 12011-12044,
  16. Byrne, B., D. B. A. Jones, K. Strong, Z.-C. Zeng, F. Deng, and J. Liu (2017), Sensitivity of CO2 surface flux constraints to observational coverage, J. Geophys. Res. Atmos., 122, 66726694,
  17. Byrne, B. and Goldblatt, C. (2015), Diminished greenhouse warming from Archean methane due to solar absorption lines, Clim. Past, 11, 559-570,
  18. Byrne, B. and Goldblatt, C. (2014), Radiative forcings for 28 potential Archean greenhouse gases, Clim. Past, 10, 1779-1801, 2014.
  19. Byrne, B. and Goldblatt, C. (2014), Radiative forcing at high concentrations of well-mixed greenhouse gases, Geophys. Res. Lett., 41,