4800 Oak Grove Drive
M/S 233-300
Dr. Tao Wang's research focuses on understanding the behavior of cloud, water vapor, and trace gases using multi-sensor satellite observations. Particularly, he is interested in the cloud vertical structures associated with different climate regimes, the cloud's responses to water budget, and the dynamical transport of trace gases from the upper troposphere to the lower stratosphere. Dr. Tao Wang's current project involve validating the AIRS and SIPS product for support of future mission.
Reviewer for
1. Wang, T., Payne, V., Manning, E., etc., Test Report of AIRS v7 and CLIMCAPS-Aqua v02.39 Level-2 Carbon Monoxide (CO) profiles, September 2024, https://doi.org/10.5067/doc/34ILKEFVUF1U.
2. Wang, T., Payne, V., Manning, E., etc., Testing report for the CLIMCAPS-Aqua v02.39 and AIRS v7 Level-2 Ozone (O3) profiles, June 2024, https://doi.org/10.5067/doc/RUGBVMX4EJVW
3. Manney, G. L., Santee, M. L., Lambert, A., Millán, L. F., Minschwaner, K., Werner, F., .., Wang, T., (2023). Siege in the southern stratosphere: Hunga Tonga-Hunga Ha'apai water vapor excluded from the 2022 Antarctic polar vortex. Geophysical Research Letters, 50, e2023GL103855. https://doi.org/10.1029/2023GL103855
4. Kalmus, P., Nguyen, H., Roman, J., Wang, T., Yue, Q., Wen, Y., et al. (2022). Data fusion of AIRS and CrIMSS near surface air temperature. Earth and Space Science, 9, e2022EA002282. https://doi.org/10.1029/2022EA002282.
5. Wang, T., Payne, V., Manning, E., etc., Test Report for the AIRS v7 and CLIMCAPS-Aqua v2 Level-3 monthly gridded composition products, November 2022, https://doi.org/10.5067/doc/VCQKMDAJIDW7
6. SPARC, 2022: SPARC Reanalysis Intercomparison Project (S-RIP) Final Report, Chapter 8: Tropical Tropopause Layer, contributing authors. SPARC Report No. 10, WCRP-6/2021, doi: 10.17874/800dee57d13, available at www.sparc-climate.org/publications/sparc-reports.
7. Schoeberl, M., Jensen, E., Wang, T., Taha, G., Ueyama, R., Wang, Y., et al. (2021). Cloud and aerosol distributions from SAGE III/ISS observations. Journal of Geophysical Research: Atmospheres, 126, e2021JD035550. https://doi.org/10.1029/2021JD035550
8. Wang, T., Wu, D. L., Gong, J., & Wang, C. (2021). Long‐term observations of upper‐tropospheric cloud ice from the MLS. Journal of Geophysical Research: Atmospheres, 126, e2020JD034058. https://doi.org/10.1029/2020JD0340589.
9. Yang, Y., Anderson, A., Kiv, D., Germann, J., Fuchs, M., Palm, S., & Wang, T. (2021). Study of antarctic blowing snow storms using MODIS and CALIOP observations with a machine learning model. Earth and Space Science, 8, e2020EA001310. https://doi.org/10.1029/2020EA001310
10. Schoeberl, M. R., Pfister, L., Wang, T., Kummer, J., Dessler, A. E., & Yu, W. (2020). Erythemal radiation, column ozone, and the North American monsoon. J. Geophys. Res. Atmos., 125, e2019JD032283. https://doi.org/10.1029/2019JD032283
11. Wang, T., Wu, D. L., Gong, J., & Tsai, V. (2019). Tropopause laminar cirrus and its role in the lower stratosphere total water budget. J. Geophys. Res. Atmos., 124, 7034– 7052. https://doi.org/10.1029/2018JD029845.
12. Yue, J., Russell, J., Gan, Q., Wang, T., Rong, P., Garcia, R., & Mlynczak, M. (2019). Increasing Water Vapor in the Stratosphere and Mesosphere After 2002. Geophysical Research Letters, 46, 13452– 13460. https://doi.org/10.1029/2019GL084973
13. Wang, X., Dessler, A. E., Schoeberl, M. R., Yu, W., and Wang, T.: Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer, Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019, 2019.14.
14. Baxter, I., Q. Ding, A. Schweiger, M. L’Heureux, S. Baxter, T. Wang, Q. Zhang, K. Harnos, B. Markle, D. Topal, and J. Lu, 0: How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Climate, 0, https://doi.org/10.1175/JCLI-D-18-0783.1
15. Schoeberl, M. R., Jensen, E. J., Pfister, L., Ueyama, R., Wang, T., Selkirk, H., et al. (2019). Water vapor, clouds, and saturation in the tropical tropopause layer. J. Geophys. Res. Atmos., 124. https://doi.org/10.1029/2018JD029849.
16. Wu, D.L., Wang, T., Várnai, T., Limbacher, J.A., Kahn, R.A., Taha, G., Lee, J.N., Gong, J., Yuan, T, MISR Radiance Anomalies Induced by Stratospheric Volcanic Aerosols. Remote Sens. 2018, 10(12), 1875, https://doi.org/10.3390/rs10121875.
17. Wu, L., Wong, S., Wang, T. et al. (2018), Moist convection: a key to tropical wave–moisture interaction in Indian monsoon intraseasonal oscillation, Clim. Dyn., https://doi.org/10.1007/s00382-018-4103-9.
18. Davis, S. M., Hegglin, M. I., Fujiwara, M., Dragani, R., Harada, Y., Kobayashi, C., Long, C., Manney, G. L., Nash, E. R., Potter, G. L., Tegtmeier, S., Wang, T., Wargan, K., and Wright, J. S. (2017): Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP, Atmos. Chem. Phys., 17, 12743-12778, https://doi.org/10.5194/acp-17-12743-2017.
19. Ye, H., Fetzer, E.J., Wong, S., Lambrigtsen, B.H., Wang, T., Chen, L., Dang, V. (2016), More frequent showers and thunderstorm days under a warming climate: evidence observed over Northern Eurasia from 1966 to 2000, Clim. Dyn., doi:10.1007/s00382-016-3412-0.
20. Wang, T., E. J. Fetzer, S. Wong, B. H. Kahn, and Q. Yue (2016), Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications, J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025239.
21. Schoeberl, M., A. Dessler, H. Ye, T. Wang, M. Avery, and E. Jensen (2016), The impact of gravity waves and cloud nucleation threshold on stratospheric water and tropical tropospheric cloud fraction, Earth and Space Science, 3, doi:10.1002/2016EA000180.
22. Wong, S., A. Del Genio, T. Wang, B. Kahn, E. Fetzer, and T. L’Ecuyer (2016), Responses of Tropical Ocean Clouds and Precipitation to the Large-Scale Circulation: Atmospheric-Water-Budget-Related Phase Space and Dynamical Regimes. J. Climate, 29, 7127–7143, doi: 10.1175/JCLI-D-15-0712.1.
23. Zhang, K., Fu, R., Wang, T., and Liu, Y.: Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region, Atmos. Chem. Phys., 16, 7825-7835, doi:10.5194/acp-16-7825-2016, 2016.
24. Lu, G., S. A. Cummer, Y. Tian, H. Zhang, F. Lyu, T. Wang, M. A. Stanley, J. Yang, and W. A. Lyons (2016), Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation, J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024644.
25. Dessler, A. E., H. Ye, T. Wang, M. R. Schoeberl, L. D. Oman, A. R. Douglass, A. H. Butler, K. H. Rosenlof, S. M. Davis, and R. W. Portmann (2016), Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century, Geophys. Res. Lett., 43, 2323–2329, doi:10.1002/2016GL067991.
26. Wang, T., S. Wong, and E. J. Fetzer (2015), Cloud Regime Evolution in the Indian Monsoon Intraseasonal Oscillation: Connection to Large-Scale Dynamical Conditions and the Atmospheric Water Budget, Geophys. Res. Lett., 42, doi:10.1002/2015GL066353.
27. Gettelman, A., and T. Wang (2015), Structural diagnostics of the tropopause inversion layer and its evolution, J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD021846.
28. Wang, T., Dessler, A. E., Schoeberl, M. R., Randel, W. J., and Kim, J.-E (2015): The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor, Atmos. Chem. Phys., 15, 3517-3526, doi:10.5194/acp-15-3517-2015.
29. Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang (2014), Cirrus feedback on interannual climate fluctuations, Geophys. Res. Lett., 41, doi:10.1002/2014GL062095.
30. Dessler, A.E., M.R. Schoeberl, T. Wang, S.M. Davis, K.H. Rosenlof, J.-P. Vernier (2014), Variations of Stratospheric Water Vapor Over the Past Three Decades, J. Geophys. Res. 119, DOI: 10.1002/2014JD021712.
31. Schoeberl, M. R., Dessler, A. E., Wang, T., Avery, M. A, Jensen, E.: Cloud Formation, Convection, and Stratospheric Dehydration, Earth and Space Science, DOI: 10.1002/2014EA000014, 2014.
32. Ray, E.A., Moore, F.L, Rosenlof, K.H, Davis, S.M., Sweeney, C., Tans, P., Wang, T., Elkins, J.W., Bönisch, H., Engel, A., Sugawara, S., T. Nakazawa and S. Aoki (2014), Improving stratospheric transport trend analysis based on SF6 and CO2 measurements, J. Geophys. Res., doi: 10.1002/2014JD021802.
33. Wang, T., Randel, W. J., Dessler, A. E., Schoeberl, M. R., and Kinnison, D. E.: Trajectory model simulations of ozone (O3) and carbon monoxide (CO) in the lower stratosphere, Atmos. Chem. Phys., 14, 1-13, doi:10.5194/acp-14-1-2014, 2014.
34. Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof: Stratospheric Water Vapor Feedback, Proc. Natl. Acad. Sci., 110, 18,087-18,091, doi: 10.1073/pnas.1310344110, 2013.
35. Schoeberl, M. R., Dessler, A. E., and Wang, T.: Modeling Upper Tropospheric and Lower Stratospheric Water Vapor Anomalies, Atmos. Chem. Phys., 13, 7783-7793, doi:10.5194/acp-13-7783-2013, 2013.
36. Schoeberl, M. R., Dessler, A. E., and Wang, T.: Simulation of Stratospheric Water Vapor and Trends Using Three Reanalyses, Atmos. Chem. Phys., 12, 6475-6487, doi:10.5194/acp-12-6475-2012, 2012.
37. Wang, T., and A. E. Dessler (2012): Analysis of Cirrus in the Tropical Tropopause Layer from CALIPSO and MLS data: A Water Perspective, J. Geophys. Res., 117, D04211, doi:10.1029/2011JD016442.
38. Wu, T., W. Dong, Y. Zhang, and T. Wang (2011): Comparison of Positive and Negative Compact Intracloud Discharges, J. Geophys. Res., 116, D03111, doi:10.1029/2010JD015233.