NASA Logo Jet Propulsion Laboratory California Institute of Technology View the NASA Portal
NASA Banner
NASA Banner
NASA Banner
JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY
NASA Banner
JPL Science
JPL Science Division Home
Planetary Science Planetary Science
Astrophysics & Space Sciences Astrophysics & Space Sciences
Earth Science Earth Science
Center for Climate Sciences (3292)
Earth Surface And Interior (329A)
Ocean Circulation And Air Sea Interaction (329B)
Sea Level And Ice (329C)
Stratosphere And Upper Troposphere (329D)
Atmospheric Physics And Weather (329E)
People
Projects
Terrestrial Hydrology (329F)
Carbon Cycle And Ecosystems (329G)
Laboratory Studies And Atmospheric Observations (329H)
Tropospheric Composition (329I)
Aerosols And Clouds (329J)
Directorate Science Affiliates Directorate Science Affiliates
Open Postdoc Positions Open Postdoc Positions
Brochures Brochures
Highlights Highlights
 Atmospheric Physics And Weather (329E): People
Brian  Kahn's Picture
Address:
Jet Propulsion Laboratory
M/S 233-304
4800 Oak Grove Drive
Pasadena, CA 91109
Phone:
818.393.0676
Fax:
818.393.4619
Email Contact:
Curriculum Vitae:

Brian Kahn

Dr. Brian Kahn is a Research Scientist working closely with the Atmospheric Infrared Sounder (AIRS) group. His research interests include active and passive remote sensing of clouds, temperature, and water vapor, with a specific focus on observing cloud and climate related atmospheric processes leveraging the natural synergy of satellite sensor constellations.


Education
  • Ph.D, Atmospheric Sciences, University of California at Los Angeles (UCLA) Department of Atmospheric and Oceanic Sciences (DAOS) (2004)
  • M.S., Atmospheric Sciences, UCLA DAOS (2001)
  • B.S. (with honors), Meteorology, San Jose State University (SJSU) (1995)

Projects

AIRS Icon AIRS
The Atmospheric Infrared Sounder, AIRS, is an instrument whose goal is to support climate research and improved weather forecasting.

CloudSat Icon CloudSat
CloudSat is an experimental satellite that uses radar to study clouds and precipitation from space. CloudSat flys in orbital formation as part of the A-Train constellation of satellites (Aqua, CloudSat, CALIPSO, PARASOL, and Aura).

PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Icon PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment)
Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) will quantify the radiative processes effected by changing temperatures in the Arctic.


Professional Experience
  • Research Scientist, JPL (2011-Present)
  • Scientist, JPL (2009-2011)
  • Visiting Researcher, UCLA, Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) (2009-Present)
  • Assistant Researcher IV, UCLA/JIFRESSE (2008)
  • NASA Postdoctoral Program (NPP) Fellow (2005-2008)
  • Academic Part-Time Researcher, JPL (2003-2005)
  • Graduate Research Assistant, UCLA (2000-2004)
  • Teaching Fellow, UCLA (1999-2002)
  • On-Air Personality for Pulse of This Planet, KKUP, 91.5 FM, Cupertino, CA (1998-2004)
  • Physics Lab Instructor, SJSU (1997-1999)
  • Lecturer on Weather and Climate, SJSU (1997-1999)
  • Exchange Student, Urals State University, Ekaterinburg, Russia (1996-1997)
  • Summer Intern, National Weather Service Forecast Office, Anchorage, AK (1994-1995)

Selected Awards
  • NPP Fellowship Award (2005-2008)
  • NASA Earth Systems Science (ESS) Fellowship (2001-2004)
  • Neiburger Teaching Award (2000) and Brian Bosart Award, UCLA DAOS (2001)
  • Scholarship to attend Urals State University, Ekaterinburg, Russia (1996-1997)

Selected Publications
  1. Guillaume, A., B. H. Kahn, E. J. Fetzer, Q. Yue, G. J. Manipon, B. D. Wilson, and H. Hua (2019), Footprint-scale cloud type mixtures and their impacts on Atmospheric Infrared Sounder cloud property retrievals, Atmos. Meas. Tech.,12, 4361–4377, https://doi.org/10.5194/amt-12-4361-2019.
  2. Kalmus, P., B. H. Kahn, S. W. Freeman, and S. C. van den Heever (2019), Trajectory-enhanced AIRS observations of environmental factors driving severe convective storms, Mon. Wea. Rev., 147, 1633–1653, doi:10.1175/MWR-D-18-0055.1.
  3. Yue, Q., B. H. Kahn, E. J. Fetzer, S. Wong, X. Huang, and M. Schreier (2019), Temporal and spatial characteristics of short-term cloud feedback on global and local interannual climate fluctuations from A-Train observations, J. Climate, 32, 1875–1893, doi:10.1175/JCLI-D-18-0335.1
  4. Wang, C., S. Platnick, T. Fauchez, K. Meyer, Z. Zhang, H. Iwabuchi, and B. H. Kahn (2019), An assessment of the impacts of cloud vertical heterogeneity on global ice cloud data records from passive satellite retrievals, J. Geophys. Res. Atmos., 124, 1578–1595, https://doi.org/10.1029/2018JD029681
  5. McCoy, D. T., P. R. Field., G. S. Elsaesser, A. Bodas-Salcedo, B. H. Kahn, M. D. Zelinka, C. Kodama, T. Mauritsen, B. Vanniere, M. Roberts, P. L. Vidale, D. Saint-Martin, A. Voldoire, R. Haarsma, A. Hill, B. Shipway, and J. Wilkinson (2019), Cloud feedbacks in extratropical cyclones: insight from long-term satellite data and high-resolution global simulations, Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019.
  6. Wong, S., C. M. Naud, B. H. Kahn, L. Wu, and E. J. Fetzer (2018), Coupling of precipitation and cloud structures in oceanic extratropical cyclones to large-scale moisture flux convergence, J. Climate, 31, 9565–9684, doi:10.1175/JCLI-D-18-0115.1.
  7. Kahn, B. H., H. Takahashi, G. L. Stephens, Q. Yue, J. Delanoë, G. Manipon, E. M. Manning, and A. J. Heymsfield (2018), Ice cloud microphysical trends observed by the Atmospheric Infrared Sounder, Atmos. Chem. Phys., 18, 10715–10739, https://doi.org/10.5194/acp-18-10715-2018.
  8. Guillaume, A., B. H. Kahn, Q. Yue, E. J. Fetzer, S. Wong, G. J. Manipon, H. Hua, and B. D. Wilson (2018), Horizontal and vertical scaling of cloud geometry inferred from CloudSat data, J. Atmos. Sci., 75, 2187–2197, doi:10.1175/JAS-D-17-0111.1.
  9. Stephens, G. L., M. Z. Hakuba, M. Webb, M. Lebsock, Q. Yue, B. H. Kahn, S. Hristova-Veleva, A. Rapp, C. Stubenrauch, G. S. Elsasser, and J. Slingo (2018), Regional intensification of the tropical hydrological cycle during ENSO, Geophys. Res. Lett., 45, 4361–4370, https://doi.org/10.1029/2018GL077598.
  10. Dorrestijn, J., B. H. Kahn, J. Teixeira, and F. W. Irion (2018), Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach, Atmos. Meas. Tech., 11, 2717-2733, https://doi.org/5194/amt-11-2717-2018.
  11. Thompson, D. R., B. H. Kahn, R. O. Green, S. A. Chien, E. M. Middleton, and D. Q. Tran (2018), Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015, Atmos. Meas. Tech., 11, 1019–1030, https://doi.org/10.5194/amt-11-1019-2018.
  12. Irion, F. W., B. H. Kahn, M. M. Schreier, E. J. Fetzer, E. Fishbein, D. Fu, P. Kalmus, R. C. Wilson, S. Wong, and Q. Yue (2018), Single-footprint retrievals of temperature, water vapor, and cloud properties from AIRS, Atmos. Meas. Tech., 11, 971–995, https://doi.org/10.5194/amt-11-971-2018.
  13. Kahn, B. H., G. Matheou, Q. Yue, T. Fauchez, E. J. Fetzer, M. Lebsock, J. Martins, M. M. Schreier, K. Suzuki, and J. Teixeira (2017), An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer, Atmos. Chem. Phys., 17, 9451–9468, https://doi.org/10.5194/acp-17-9451-2017.
  14. Chang, K.-W., T. S. L’Ecuyer, B. H. Kahn, and V. Natraj (2017), Information content of visible and midinfrared radiances for retrieving tropical ice cloud properties, J. Geophys. Res. Atmos., 122, 4944–4966, doi:10.1002/2016JD026357.
  15. Yue, Q., B. H. Kahn, E. J. Fetzer, S. Wong, R. Frey, and K. G. Meyer (2017), On the response of MODIS cloud coverage to global mean surface air temperature, J. Geophys. Res. Atmos., 122, 966979, doi:10.1002/2016JD025174.
  16. Devasthale, A., J. Sedlar, B. H. Kahn, M. Tjernström, E. J. Fetzer, B. Tian, J. Teixeira, and T. S. Pagano (2016), A decade of spaceborne observations of the Arctic atmosphere: Novel insights from NASA’s AIRS instrument, Bull. Amer. Met. Soc., 97, 2163–2176, doi:10.1175/BAMS-D-14-00202.1.
  17. Wang, T., E. J. Fetzer, S. Wong, B. H. Kahn, and Q. Yue (2016), Interpretation of MODIS cloud images using CloudSat/CALIPSO cloud vertical profiles, J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025239.
  18. Wong, S., A. D. Del Genio, T. Wang, B. H. Kahn, E. J. Fetzer, and T. S. L’Ecuyer (2016), Responses of tropical ocean clouds and precipitation to the large-scale circulation: Atmospheric water budget-related phase space and dynamical regimes, J. Climate, 29, 7127–7143, doi:10.1175/JCLI-D-15-0712.1.
  19. Kahn, B. H., X. Huang, G. L. Stephens, W. D. Collins, D. R. Feldman, H. Su, S. Wong, and Q. Yue (2016), ENSO regulation of far- and mid-infrared contributions to clear-sky OLR, Geophys. Res. Lett., 43, 8751–8759, doi:10.1002/2016GL070263.
  20. Staten, P. W., B. H. Kahn, M. M. Schreier, and A. K. Heidinger (2016), Sub-pixel characterization of HIRS spectral radiances using cloud properties from AVHRR, J. Atmos. Ocean Tech., 33, 1519–1538, doi:10.1175/JTECH-D-15-0187.1.
  21. Stephens, G. L., B. H. Kahn, and M. Richardson (2016), The super greenhouse effect in a changing climate, J. Climate, 29, 5469–5482, doi:10.1175/JCLI-D-15-0234.1.
  22. Sengupta, A., N. Cressie, B. H. Kahn, and R. Frey (2016), Predictive inference for big, spatial, non-Gaussian data: MODIS cloud data and its change-of-support, Aust. N. Z. J. Stat., 58(1), 15–45, doi:10.1111/anzs.12148.
  23. Yue, Q., B. H. Kahn, E. J. Fetzer, M. Schreier, S. Wong, X. Chen, and X. Huang (2016), Observation-based longwave cloud radiative kernels derived from the A-train, J. Climate, 29, 2023–2040, doi:10.1175/JCLI-D-15-0257.1
  24. Anderson, D. C., J. M. Nicely, R. J. Salawitch, T. P. Canty, R. R. Dickerson, T. F. Hanisco, G. M. Wolfe, E. C. Apel, E. Atlas, T. Bannan, S. Bauguitte, N. J. Blake, J. F. Bresch, T. L. Campos, L. J. Carpenter, M. D. Cohen, M. Evans, R. P. Fernandez, B. H. Kahn, D. E. Kinnison, S. R. Hall, N. R. P. Harris, R. S. Hornbrook, J.-F. Lamarque, M. Le Breton, J. D. Lee, C. Percival, L. Pfister, R. B. Pierce, D. D. Riemer, A. Saiz-Lopez, B. J. B. Stunder, A. M. Thompson, K. Ullmann, A. Vaughan, and A. J. Weinheimer (2016), A pervasive role for biomass burning in tropical high ozone/low water structures, Nat. Comm., 7, doi:10.1038/ncomms10267.
  25. Wu, L., H. Su, R. G. Fovell, T. J. Dunkerton, Z. Wang, and B. H. Kahn (2015), Impact of environmental moisture on tropical cyclone intensification, Atmos. Chem. Phys., 15, 14031–14053.
  26. Kahn, B. H., M. M. Schreier, Q. Yue, E. J. Fetzer, F. W. Irion, S. Platnick, C. Wang, S. L. Nasiri, and T. S. L’Ecuyer (2015), Pixel-scale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius, J. Geophys. Res., 120, doi:10.1002/2015JD023950. 

  27. Naud, C. M., and B. H. Kahn (2015), Thermodynamic phase and ice cloud properties in northern hemisphere winter extratropical cyclones observed by Aqua AIRS, J. Appl. Meteor. Climatol., 54, 2283–2303, doi:10.1175/JAMC-D-15-0045.1.
  28. Lubin, D., B. H. Kahn, M. A. Lazzara, P. Rowe, and V. P. Walden (2015), Variability in AIRS-retrieved cloud amount and thermodynamic phase over west versus east Antarctica influenced by the SAM, Geophys. Res. Lett., 42, doi:10.1002/2014GL062285. 

  29. Wong, S., E. J. Fetzer, M. Schreier,
 G. Manipon, E. F. Fishbein, B. H. Kahn, Q. Yue, and F. W. Irion (2015), Cloud-induced uncertainties in
AIRS and ECMWF temperature and specific humidity, J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD022440. 

  30. Schreier, M. M., B. H. Kahn, K. Sušelj, J. Karlsson, S. C. Ou, Q. Yue, K.-F. Li, and S. L. Nasiri (2014), Atmospheric parameters in a subtropical cloud regime transition derived by AIRS and MODIS: observed statistical variability compared to ERA-Interim, Atmos. Chem. Phys., 14, 3573–3587.
  31. Kahn, B. H., F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri, C. M. Naud, J. Blaisdell, M. M. Schreier, Q. Yue, K. W. Bowman, E. J. Fetzer, G. C. Hulley, K. N. Liou, D. Lubin, S. C. Ou, J. Susskind, Y. Takano, B. Tian, and J. Worden (2014), The Atmospheric Infrared Sounder Version 6 cloud products, Atmos. Chem. Phys., 14, 399–426.
  32. Yue, Q., E. J. Fetzer, B. H. Kahn, S. Wong, G. Manipon, A. Guillaume, and B. Wilson (2013), Cloud-state dependent sampling in AIRS observations based on CloudSat cloud classification, J. Climate, 26, 8357–8377.
  33. Yue, Q., B. H. Kahn, H. Xiao, M. M. Schreier, E. J. Fetzer, J. Teixeira, and K. Suselj (2013), Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model, J. Geophys. Res. Atmos., 118, 8598–8611, doi:10.1002/jgrd.50676.
  34. Ou, S.-C., B. H. Kahn, K. N. Liou, Y. Takano, M. M. Schreier, and Q. Yue (2013), Retrieval of cirrus cloud properties from the Atmospheric Infrared Sounder: The k-coefficient approach combined with SARTA plus delta-four stream approximation, IEEE Trans. Geosci. Remote Sens., 51, 1010–1024.
  35. Tian, B., E. J. Fetzer, B. H. Kahn, J. Teixeira, E. Manning, and T. Hearty (2013), Evaluating CMIP5 Models using AIRS Tropospheric Air Temperature and Specific Humidity Climatology, J. Geophys. Res. Atmos., 118, 114–134, doi:10.1029/2012JD018607.

 


Group Home Page
People in this Group
Group Projects

JPL Privacy Statement Sitemap Contact Site Manager
FIRST GOV NASA Home Page