NASA Logo Jet Propulsion Laboratory California Institute of Technology View the NASA Portal
NASA Banner
NASA Banner
NASA Banner
JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY
NASA Banner
JPL Science
JPL Science Division Home
Planetary Science Planetary Science
Astrophysics & Space Sciences Astrophysics & Space Sciences
Earth Science Earth Science
Center for Climate Sciences (3292)
Earth Surface And Interior (329A)
Ocean Circulation And Air Sea Interaction (329B)
Sea Level And Ice (329C)
Stratosphere And Upper Troposphere (329D)
Atmospheric Physics And Weather (329E)
People
Projects
Terrestrial Hydrology (329F)
Carbon Cycle And Ecosystems (329G)
Laboratory Studies And Atmospheric Observations (329H)
Tropospheric Composition (329I)
Aerosols And Clouds (329J)
Directorate Science Affiliates Directorate Science Affiliates
Open Postdoc Positions Open Postdoc Positions
Brochures Brochures
 Atmospheric Physics And Weather (329E): People
Derek  Posselt's Picture
Address:
Jet Propulsion Laboratory
M/S 233-304
4800 Oak Grove Drive
Pasadena, CA 91109
Phone:
Office: 818.354.8107
Email Contact:
Curriculum Vitae:

Derek Posselt

 Dr. Posselt is a research scientist with the Atmospheric Physics and Weather group (329E) in the Earth Science Section at NASA Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech). He is also a visiting Associate Researcher at the Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) at the University of California, Los Angeles (UCLA).

 Dr. Posselt has 17 years of experience working on satellite data applications and the development of satellite missions, and 18 years of experience confronting numerical models with remote sensing and in-situ observations. He served as CYGNSS Deputy Principal Investigator from 2012 – 2016, and currently coordinates extended science team activities for the mission. He is actively involved in the quantitative analysis of satellite information, including the use of uncertainty quantification (UQ) algorithms and observing system simulation experiments (OSSEs). He is also actively engaged in the development of new data assimilation and retrieval algorithms, particularly in a Bayesian probabilistic context.

 His research interests include: remote sensing of cloud and precipitation properties, numerical modeling of cloud systems, and the use of Bayesian algorithms in the development of new data assimilation methodologies and remote sensing techniques. He has experience as a user and developer of the NASA Goddard Earth Observing System (GEOS) model, the NASA Goddard Cumulus Ensemble (GCE) model, the NCAR Cloud Model (CM1), and the Weather Research and Forecasting (WRF) model.

 Dr. Posselt is currently a member of the science teams for the Cyclone Global Navigation Satellite System (CYGNSS), Aerosols Clouds Ecosystems (ACE), and CloudSat missions.


Education
  • B.S., Atmospheric Science, University of Wisconsin, Madison, WI (1994-1997)
  • M.S., Atmospheric Science, University of Wisconsin, Madison, WI (1998-2001)
  • Ph.D., Atmospheric Science, Colorado State University, Fort Collins, CO (2003-2006)

Research Interests
  • Cloud system sensitivity to changes in microphysics and environment
  • Data assimilation and remote sensing theory development
  • Cloud and precipitation property retrievals from active and passive remote sensing instruments
  • Quantitative assessment of information in current and future observing systems, including the use of observing system simulation experiments
  • Evaluation of model uncertainty, especially in the representation of moist processes
  • Cloud and precipitation processes in tropical convection, extratropical cyclones, and mountainous regions

Projects

AIRS Icon AIRS
The Atmospheric Infrared Sounder, AIRS, is an instrument whose goal is to support climate research and improved weather forecasting.

CloudSat Icon CloudSat
CloudSat is an experimental satellite that uses radar to study clouds and precipitation from space. CloudSat flys in orbital formation as part of the A-Train constellation of satellites (Aqua, CloudSat, CALIPSO, PARASOL, and Aura).

CYGNSS Icon CYGNSS
The Cyclone Global Navigation Satellite System (CYGNSS) will measure ocean surface wind speed throughout the life cycle of tropical storms and hurricanes. The goal is a fundamental improvement in hurricane forecasting.

JIFRESSE Icon JIFRESSE
JIFRESSE is a scientific collaboration between UCLA and JPL to improve understanding and to develop future projections about global climate change.


Professional Experience
  • Deputy Principal Investigator, NASA Cyclone Global Navigation Satellite System (CYGNSS) mission (2012 - 2016)
  • Member, AMS Satellite Meteor., Ocean., and Climatology Committee (2010 - 2016)
  • NASA Langley Science Directorate Peer Review, Active Remote Sensing Sub-Panel Lead (2015)
  • Member, NASA Earth Science Senior Review Panel (2013,2015)
  • Associate Professor, Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (2014 - 2016)
  • Assistant Professor, Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI (2011 - 2014)
  • Visiting Scientist, Naval Research Laboratory, Monterey, CA (2010-2011)
  • Assistant Research Scientist, Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI (2007 - 2011)
  • Post-doctoral Researcher, Colorado State University and NASA Goddard Space Flight Center (2006-2007)

Selected Publications
  1. Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2017: Observed co-variations of aerosol optical depth and cloud cover in extratropical cyclones. J. Geophys. Res., 122, 10,338-10,356. doi:10.1002/2017JD027240.
  2. Crespo, J. A., D. J. Posselt, C. M. Naud, and C. Bussy-Virat, 2017: CYGNSS Observations of Extratropical Fronts and Cyclones. J. Appl. Meteor. Clim., 56, 2027-2034.
  3. Bukowski, J., D. J. Posselt, J. S. Reid, and S. A. Atwood, 2017: Modes of Thermodynamic and Wind Variability over the Maritime Continent. Atmos. Chem. Phys., 17, 4611-4626, doi:10.5194/acp-17-4611-2017.
  4. Posselt, D. J., J. Kessler, and G. G. Mace, 2017: Bayesian retrievals of vertically resolved cloud particle size distribution properties. J. Appl. Meteor. Clim., 56, 745-765, doi: 10.1175/JAMC-D-16-0276.1.
  5. Li, X., J. R. Mecikalski, and D. J. Posselt, 2017: An Ice-Phase Microphysics Forward Model and Preliminary Results of Polarimetric Radar Data Assimilation. Mon. Wea. Rev., 145, 683-708, doi: 10.1175/MWR-D-16-0035.1.
  6. Zhang, S., Z. Pu, D. J. Posselt, and R. Atlas, 2017: Impact of CYGNSS ocean surface wind speeds on numerical simulations of a hurricane in observing system simulation experiments. J. Atmos. Ocn. Tech., 34, 375-383, doi: 10.1175/JTECH-D-16-0144.1.
  7. Posselt, D. J., J. Kessler, and G. G. Mace, 2017: Bayesian retrievals of vertically resolved cloud particle size distribution properties. J. Appl. Meteor. Clim., 56, 745-765, doi: 10.1175/JAMC-D-16-0276.1.
  8. Bukowski, J., D. J. Posselt, J. S. Reid, and S. A. Atwood, 2017: Modes of Thermodynamic and Wind Variability over the Maritime Continent. Atmos. Chem. Phys., 17, 4611-4626, doi:10.5194/acp-17-4611-2017.
  9. Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2016: Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans. Geophys. Res. Lett., 43, 10,504-10,511, doi:10.1002/2016GL070953.
  10. Crespo, J. A., and D. J. Posselt, 2016: A-Train Based Case Study of Stratiform - Convective Transition within a Warm Conveyor Belt, Mon. Wea. Rev., 144, 2069–2084.
  11. Ruf, C., R. Atlas, P. Chang, M. P. Clarizia, J. Garrison, S. Gleason, S. Katzberg, Z. Jelenak, J. Johnson, S. Majumdar, A. O’Brien, D. J. Posselt, A. Ridley, R. Rose, and V. Zavorotny, 2016: New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Amer. Meteor. Soc., 97, 385-395.
  12. Posselt, D. J., 2016: A Bayesian Examination of Deep Convective Squall Line Sensitivity to Changes in Cloud Microphysical Parameters. J. Atmos. Sci., 73, 637–665.
  13. Posselt, D. J., B. Fryxell, A. Molod, and B. Williams, 2016: Quantitative Sensitivity Analysis of Physical Parameterizations for Cases of Deep Convection in the NASA GEOS-5 Model. J. Climate, 29, 455-479.
  14. He, F., and D. J. Posselt, 2015: Impact of Parameterized Physical Processes on Simulated Tropical Cyclone Characteristics in the Community Atmosphere Model. J. Climate, 24, 9857-9872.
  15. Tushaus, S. A., D. J. Posselt, M. M. Miglietta, R. Rotunno, and L. Delle Monache, 2015: Bayesian Exploration of Multivariate Orographic Precipitation Sensitivity for Moist Stable and Neutral Flows. Mon. Wea. Rev., 143, 4459-4475.
  16. Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2015: A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts Over the Global Oceans. J. Climate, 28, 6743-6762.
  17. Posselt, D. J., X. Li, S. A. Tushaus, and J. R. Mecikalski, 2015: Assimilation of Dual-Polarization Radar Observations in Mixed- and Ice- Phase Regions of Convective Storms: Information Content and Forward Model Errors. Mon. Wea. Rev., 143, 2611-2636.
  18. He, F., D. J. Posselt, C. M. Zarzycki, and C. Jablonowski, 2015: A Balanced Tropical Cyclone Test Case for AGCMs with Background Vertical Wind Shear. Mon. Wea. Rev., 143, 1762–1781.
  19. Posselt, D. J., and G. G. Mace, 2014: MCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar–Passive Microwave Cloud Property Retrieval. J. Appl. Meteor. Clim., 53, 2034-2057.
  20. Tao, W.-K., S. Lang, X. Zeng, X. Li, T. Matsui, K. Mohr, D. J. Posselt, J. Chern, P. N. Norris, I.-S. Kang, I. Choi, and Y.-M. Yang, 2014: The Goddard Cumulus Ensemble (GCE) Model: Improvements and applications for Studying Precipitation Processes. Atmos. Res., 143, 392-424.
  21. Posselt, D. J., D. Hodyss, and C. H. Bishop, 2014: Errors in Ensemble Kalman Smoother Estimates of Cloud Microphysical Parameters, Mon. Wea. Rev., 142, 1631-1654.
  22. van Lier-Walqui, M. A., T. Vukicevic, and D. J. Posselt, 2014: Linearization of microphysical parameterization uncertainty using multiplicative process perturbation parameters, Mon. Wea. Rev., 142, 401-413.
  23. Posselt, D. J., 2013: Markov chain Monte Carlo Methods: Theory and Applications. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, 2nd Ed. S. K. Park and L. Xu, Eds., Springer, pp 59–87.
  24. Wright, D. M., D. J. Posselt, and A. L. Steiner, 2013: Sensitivity of Lake-Effect Snowfall to Lake Ice Cover and Temperature in the Great Lakes Region. Mon. Wea. Rev., 141, 670-689.
  25. van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of Cloud Microphysical Parameterization Uncertainty using Radar Reflectivity, Mon. Wea. Rev., 140, 3442-3466.
  26. Posselt, D. J., A. R. Jongeward, C.-Y. Hsu, and G. L. Potter, 2012: Object-Based Evaluation of MERRA-Simulated Cloud Physical Properties and Radiative Fluxes during the 1998 El Nino - La Nina Transition. J. Climate, 25, 7313-7327.
  27. Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2012: Observational analysis of cloud and precipitation in midlatitude cyclones: northern versus southern hemisphere warm fronts. J. Climate, 25, 5135-5151.
  28. Posselt, D. J., and C. H. Bishop, 2012: Nonlinear parameter estimation: Comparison of an Ensemble Kalman Smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140, 1957-1974.
  29. Posselt, D. J., S. C. van den Heever, G. L. Stephens, and M. R. Igel, 2012: Changes in the interaction between tropical convection, radiation and the large scale circulation in a warming environment. J. Climate, 35, 557-571.
  30. Posselt, D. J., and T. Vukicevic, 2010: Robust Characterization of Model Physics Uncertainty for Simulations of Deep Moist Convection. Mon. Wea. Rev., 138, 1513–1535.
  31. Posselt, D. J., S. C. van den Heever, and G. L. Stephens, 2008: Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophys. Res. Lett., 35, L08802, doi:10.1029/2007GL033029.
  32. Posselt, D. J., G. L. Stephens, and M. Miller, 2008: CloudSat: Adding a New Dimension to a Classical View of Extratropical Cyclones. Bull. Amer. Meteor. Soc., 89, 599-609.
  33. Posselt, D. J., T. S. L’Ecuyer, and G. L. Stephens, 2008: Exploring the Error Characteristics of Thin Ice Cloud Property Retrievals Using a Markov Chain Monte Carlo Algorithm. J. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.
  34. Vukicevic, T., and D. J. Posselt 2008: Analysis of the Impact of Model Nonlinearities in Inverse Problem Solving. J. Atmos. Sci., 65, 2803-2823.
  35. Posselt, D. J., and J. E. Martin, 2004: The Effect of Latent Heat Release on the Evolution of a Warm Occluded Thermal Structure., Mon. Wea. Rev., 132, 578-599.

Group Home Page
People in this Group
Group Projects

JPL Privacy Statement Sitemap Contact Site Manager
FIRST GOV NASA Home Page