NASA Logo Jet Propulsion Laboratory California Institute of Technology View the NASA Portal
NASA Banner
NASA Banner
NASA Banner
JPL HOME EARTH SOLAR SYSTEM STARS & GALAXIES SCIENCE & TECHNOLOGY
NASA Banner
JPL Science
JPL Science Home
Planetary Science Planetary Science
Astrophysics & Space Sciences Astrophysics & Space Sciences
Earth Science Earth Science
Center for Climate Sciences
Earth Surface And Interior
Ocean Circulation And Air Sea Interaction
Sea Level And Ice
Stratosphere And Upper Troposphere
Atmospheric Physics And Weather
Terrestrial Hydrology
Carbon Cycle And Ecosystems
Laboratory Studies And Atmospheric Observations
Tropospheric Composition
Aerosols And Clouds
People
Projects
Directorate Science Affiliates Directorate Science Affiliates
Open Postdoc Positions Open Postdoc Positions
Brochures Brochures
Highlights Highlights
 Aerosols And Clouds: People
Anthony B. Davis's Picture
Address:
Jet Propulsion Laboratory
M/S 233-200
4800 Oak Grove Drive
Pasadena, CA 91109
Phone:
818.354.0450
Curriculum Vitae:

Anthony B. Davis

Education
  • PhD, Physics, McGill University (1992)
  • MS, Physics, University of Montreal (1980)
  • BSc, Physics, University Pierre & Marie Curie/Paris VI (1977)

Research Interests
  • Remote sensing signal physics applied to the Earth's cloudy atmosphere.
  • Constrained 3D cloud shape reconstruction using multi-pixel/multi-angle observations.
  • Multi-spectral 1D and 3D retrievals of cloud and aerosol properties using polarization.
  • Cloud probing with multiple-scattering/wide-field-of-view lidar.
  • Cloud property retrieval using oxygen A-band spectroscopy.
  • Theoretical and computational radiative transfer in spatially complex scenes (3D clouds, cloud/surface systems and/or rough terrain), steady-state or time-dependent.
  • Radiation energetics for realistic 3D clouds and cloud systems.
  • Climate impact of clouds through radiation and hydrology, and their interaction with aerosols.
  • Multi-scale/fractal and multi-moment statistics of nonlinear atmospheric processes using wavelets, emphasizing cloud formation, evolution, and precipitation.
  • Sampling issues, such as ground-based stations versus satellite platforms.
  • Cloud-process model validation using remote sensing data.

Projects

MISR Icon MISR
The Multi-angle Imaging SpectroRadiometer (MISR) instrument provides a unique opportunity for studying the environment and climate of Earth through the acquisition of global multiangle imagery on the daylit side of Earth.

AirMSPI Icon AirMSPI
The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument flies aboard NASA's ER-2 high altitude aircraft.

OCO-2 - Orbiting Carbon Observatory Icon OCO-2 - Orbiting Carbon Observatory
The Orbiting Carbon Observatory-2 (OCO-2) is a mission designed to make precise, time-dependent global measurements of atmospheric carbon dioxide (CO2) from an Earth orbiting satellite.

DSCOVR Icon DSCOVR
The Deep Space Climate Observatory (DSCOVR) is a partnership between NASA, the National Oceanic and Atmospheric Administration (NOAA) and the US Air Force.

Glory Icon Glory
Although it failed at launch, the Glory Science Team was tasked to pursue its research goals with any form of data that approximates what its two instruments, the Aerosol Polarimetric Sensor (APS) and Total Irradiance Monitor (TIM), would have collected.

I3RC Icon I3RC
The Intercomparison of 3D Radiation Codes (I3RC) is an ongoing grassroots project in the international atmospheric 3D radiative transfer community focused on creating benchmarks for and verifying their computational models.

PACE Icon PACE
PACE's advanced technologies will provide unprecedented insight into Earth's ocean and atmosphere, which impact our everyday lives by regulating climate and making our planet habitable.

MODIS Icon MODIS
With its sweeping 2,330-km-wide viewing swath, MODIS sees every point on our world every 1-2 days in 36 discrete spectral bands.


Professional Experience
  • Jet Propulsion Laboratory, California Institute of Technology, Research Scientist (2009-Present)
  • UCLA - JIFRESSE, Visiting Research Scientist (2010-2017)
  • Los Alamos National Laboratory, Guest Scientist, (2009-2016)
  • Los Alamos National Laboratory, Technical Staff Member, Space & Remote Sensing Group (1998-2008)
  • NASA - Goddard Space Flight Center, Visiting Scientist and contractor (SSAI), Climate & Radiation Branch (1992-1997)
  • Various teaching, outreach and research positions (1978-1986).

Selected Publications
  • Selection below is only since joining JPL in February 2009. For a comprehensive list, please send request by email.
  1. L. Forster, A. B. Davis, D. J. Diner, and B. Mayer, Toward cloud tomography from space using MISR and MODIS: Locating the "veiled core" in opaque convective clouds, J. Atmos. Sci. (submitted). Preprint available at https://arxiv.org/abs/1910.00077.
  2. L.A. Remer, A.B. Davis, S. Mattoo, R.C. Levy, O.V. Kalashnikova, J. Chowdhary, K. Knobelspiesse, Z. Ahmad, E. Boss, B. Cairns, O. Coddington, H. M. Dierssen, D.J. Diner, B. Franz, R. Frouin, B.-C. Gao, A. Ibrahim, J. V. Martins, A.H. Omar, O. Torres, S.E. Platnick, F. Xu, and P.-W. Zhai, Retrieving Aerosol characteristics from the PACE Mission, Part 1: Ocean Color Instrument, Frontiers in Earth Science 7, 152- (2019). https://www.frontiersin.org/articles/10.3389/feart.2019.00152/full
  3. A. B. Davis and O. V. Kalashnikova, Aerosol layer height over water via oxygen A-band observations from space: A tutorial, in Springer Series in Light Scattering, vol. 3: Radiative Transfer and Light Scattering, A. A. Kokhanovsky (Ed.), Springer, Heidelberg (Germany), pp. 133-166 (2019). https://doi.org/10.1007/978-3-030-03445-0
  4. A.B. Davis, N. Ferlay, Q. Libois, A. Marshak, Y. Yang, and Q. Min, Cloud information content in EPIC/DSCOVR's Oxygen A- and B-band Channels: A physics-based approach, J. Quant. Spectrosc. Rad. Transf. 220, 84-96 (2018). http://www.umr-cnrm.fr/IMG/pdf/davis2018_epic_clouds_oxygen_band.pdf
  5. A.B. Davis, G. Merlin, C. Cornet, L. C.-Labonnote, J. Riédi, N. Ferlay, P. Dubuisson, Q. Min, Y. Yang, and A. Marshak, Cloud information content in EPIC/DSCOVR's Oxygen A- and B-band Channels: An optimal estimation approach, J. Quant. Spectrosc. Rad. Transf. 216, 6-16 (2018). https://www.sciencedirect.com/science/article/abs/pii/S0022407317309147
  6. G. Bal, J. Chen, and A.B. Davis, Reconstruction of cloud geometry from high-resolution multi-angle images, Inverse Problems in Imaging 12, 261-280 (2018). https://doi.org/10.3934/ipi.2018011
  7. F. Xu, G. van Harten, D. J. Diner, A. B. Davis, F. Seidel, B. Rheingans, M. Tosca, M. Alexandrov, B. Cairns, R. Ferrare, S. Burton, M. Fenn, C. Hostetler, R. Wood, and J. Redemann, Coupled retrieval of liquid water cloud and aerosol above cloud properties using the Airborne Multi-angle Spectro-Polarimetric Imager (AirMSPI), J. Geophys. Res. - Atmospheres 123, 3175-3204 (2018). https://doi.org/10.1002/2017JD027926
  8. A. B. Davis, F. Xu, and D. J. Diner, Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers, J. Quant. Spectrosc. Rad. Transf. 205, 148-162 (2018); https://doi.org/10.1016/j.jqsrt.2017.10.003. Addendum, J. Quant. Spectrosc. Rad. Transf. 206, 251-253 (2018); https://doi.org/10.1016/j.jqsrt.2017.11.018.
  9. A. Levis, Y.Y. Schechner, and A.B. Davis, Multiple-scattering microphysics tomography. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR17), pp. 5797-5806 (2017). http://openaccess.thecvf.com/content_cvpr_2017/papers/Levis_Multiple-Scattering_Microphysics_Tomography_CVPR_2017_paper.pdf"
  10. T. Fauchez, A. B. Davis, C. Cornet, F. Szczap, S. Platnick, P. Dubuisson, and F. Thieulieux, A fast hybrid (3D/1D) model for thermal radiative transfer in cirrus via successive orders of scattering, J. Geophys. Res. - Atmospheres 122, 344-366 (2017). https://doi.org/10.1002/2016JD025607
  11. G. Merlin, J. Riédi, L. C.-Labonnote, C. Cornet, A. B. Davis, P. Dubuisson, M. Desmons, N. Ferlay, and F. Parol, Cloud information content analysis of multi-angular measurements in the oxygen A-band: Application to 3MI and MSPI, Atmos. Meas. Techn. 9, 4977-4995 (2016). https://doi.org/10.5194/amt-9-4977-2016
  12. F. Xu, A. B. Davis and D. J. Diner, Markov chain formalism for generalized radiative transfer in a plane-parallel medium, accounting for polarization, J. Quant. Spectrosc. Rad. Transf. 184, 14-26 (2016). https://doi.org/10.1016/j.jqsrt.2016.06.004
  13. M.J. Garay, A.B. Davis, and D.J. Diner, Tomographic reconstruction of an aerosol plume using passive multiangle observations from the MISR satellite instrument, Geophys. Res. Lett. 43, 12,590-12,596 (2016). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL071479
  14. I. Yanovsky and A. B. Davis, Separation of radiances from a cirrus layer and broken cumulus clouds in multispectral images, IEEE Trans. Geosc. and Remote Sens. 53, 2275-2285, (2015). https://doi.org/10.1109/TGRS.2014.2352319
  15. A. A. Kokhanovsky, A. B. Davis, B. Cairns, O. Dubovik, O. Hasekamp, I. Sano, S. Mukai, V. V. Rozanov, P. Litvinov, T. Lapyonok, I. S. Kolomiets, Y. A. Oberemok, S. Savenkov, W. Martin, A. Wasilewski, A. Di Noia, F. A. Stap, J. Rietjens, F. Xu, V. Natraj, M. Duan, T. Cheng, and R. Munro, Space-based remote sensing of aerosols: The multi-angle spectro-polarimetric frontier, Earth-Science Reviews 145, 85-116 (2015). https://doi.org/10.1016/j.earscirev.2015.01.012
  16. A. Levis, A. Aides, Y.Y. Schechner, and A.B. Davis, Airborne three-dimensional cloud tomography. In Proceedings of the IEEE International Conference on Computer Vision 2015 (ICCV15), pp. 3379-3387 (2015). http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Levis_Airborne_Three-Dimensional_Cloud_ICCV_2015_paper.html
  17. A. B. Davis and F. Xu, A Generalized linear transport model for spatially-correlated stochastic media, Journal of Computational and Theoretical Transport (formerly, Transport Theory and Statistical Physics) 43, 474-514 (2014). https://doi.org/10.1080/23324309.2014.978083. Preprint available at http://arxiv.org/abs/1410.8200.
  18. S. Sanghavi, A. B. Davis, and A. Eldering, vSmartMOM: A vector matrix operator method-based radiative transfer model linearized with respect to aerosol properties, J. Quant. Spectrosc. Rad. Transf. 133, 412-433 (2014). https://doi.org/10.1016/j.jqsrt.2013.09.004
  19. I. Langmore, A.B. Davis, and G. Bal, Multi-pixel retrieval of structural and optical parameters in a 2D scene with a path-recycling Monte Carlo forward model and a new Bayesian inference engine, IEEE Trans. Geosc. and Remote Sens. 51, 2903-2919 (2013). https://doi.org/10.1109/TGRS.2012.2217380
  20. F. Xu, R. A. West, and A. B. Davis, A hybrid method for polarized radiative transfer computation in a spherical-shell planetary atmosphere, J. Quant. Spectrosc. Rad. Transf. 117, 59-70 (2013). https://doi.org/10.1016/j.jqsrt.2012.10.013
  21. A. B. Davis, M. J. Garay, F. Xu, Z. Qu, and C. Emde, 3D radiative transfer effects in multi-angle/multi-spectral radio-polarimetric signals from a mixture of clouds and aerosols viewed by a non-imaging sensor, in S.P.I.E. Proceedings, Vol. 8873, "Polarization Science and Remote Sensing VI," J. A. Shaw and D. A. LeMaster (Eds.), p. 887309 (2013). https://doi.org/10.1117/12.2023733
  22. A. B. Davis, Some new lidar equations for laser pulses scattered back from optically thick media such as clouds, dense aerosol plumes, sea ice, and turbid coastal waters, in S.P.I.E. Proceedings, Vol. 8872, "Lidar Remote Sensing for Environmental Monitoring XIV," U. N. Singh (Ed.), p. 88720E (2013), https://doi.org/10.1117/12.2025341
  23. F. Xu, A. B. Davis, S. Sanghavi, J. V. Martonchik, and D. J. Diner, Linearization of Markov chain formalism for radiative transfer in a plane-parallel atmosphere/surface system, Appl. Opt. 51, 3491-3507 (2012). https://doi.org/10.1364/AO.51.003491
  24. D. J. Diner, R. Hodos, A. B. Davis, M. J. Garay, J. V. Martonchik, S. Sanghavi, P. von Allmen, A. A. Kokhanovsky, and P. Zhai, An optimization approach for aerosol retrievals using simulated MISR radiances, Atm. Res. 116, 1-14 (2012). https://doi.org/10.1016/j.atmosres.2011.05.020
  25. G. Bal, A.B. Davis, and I. Langmore, A hybrid (Monte-Carlo/deterministic) approach for multi-dimensional radiation transport, J. Comput. Phys. 230, 7723-7735 (2011). https://doi.org/10.1016/j.jcp.2011.06.029
  26. A. B. Davis and R. Sanchez, Preface - Two truly special sessions at the 2009 International Conference on Mathematics and Computational Methods (M&C 2009): Transport ... across disciplinary divides, J. Quant. Spectrosc. Rad. Transf. 112, 560-565 (2011). https://doi.org/10.1016/j.jqsrt.2010.11.014
  27. A.B. Davis and M.B. Mineev-Weinstein, Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations, J. Quant. Spectrosc. Rad. Transf. 112 (Special Issue on "M&C2009"), 632-645 (2011). https://doi.org/10.1016/j.jqsrt.2010.10.001
  28. O. V. Kalashnikova, M. J. Garay, A. B. Davis, D. J. Diner, and J. V. Martonchik, Sensitivity of multi-angle photo-polarimetery to vertical layering and mixing of absorbing aerosols: Quantifying measurement uncertainties, J. Quant. Spectrosc. Rad. Transf. 112, 2149-2163 (2011). https://doi.org/10.1016/j.jqsrt.2011.05.010
  29. F. Xu and A. B. Davis, Derivatives of light scattering properties for a nonspherical particle computed with the T-matrix method, Opt. Lett. 36, 4464-4466 (2011). Also in Virtual Journal for Biomedical Optics (VJBO) 7, 1/4/2012, pp. 4464- (2011), http://www.opticsinfobase.org/vjbo/abstract.cfm?uri=ol-36-22-4464.
  30. F. Xu, A. B. Davis, R. A. West, J. V. Martonchik, and D. J. Diner, Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere overlaying a polarizing surface with bidirectional reflectivity, Opt. Lett. 36, 2083-2085 (2011). https://doi.org/10.1364/OL.36.002083
  31. F. Xu, A. B. Davis, R. A. West, and L. W. Esposito, Markov chain formalism for polarized light transfer in plane-parallel atmospheres, with numerical comparison to the Monte Carlo method, Opt. Expr. 19, 946-967 (2011). Also in Virtual Journal for Biomedical Optics (VJBO) 6, 2/17/2011, pp. 946- (2011), http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-2-946.
  32. M. de la Torre Juárez, A. B. Davis, and E. J. Fetzer, Scale-by-scale analysis of probability distributions for global MODIS-AQUA cloud properties: How the large-scale signature of turbulence may impact statistical analyses of clouds, Atmos. Chem. Phys. 11, 2893-2901 (2011). https://doi.org/10.5194/acp-11-2893-2011
  33. N. Ferlay, F. Thieuleux, C. Cornet, A. B. Davis, C. Vanbauce, F. Ducos, P. Dubuisson, F. Parol, and J. Riédi, Toward new inferences about cloud structures from multidirectional measurements in the oxygen A-Band: Middle-of-cloud pressure and cloud geometrical thickness from POLDER-3/PARASOL, J. Appl. Meteor. Clim. 49, 2492-2507 (2010). https://doi.org/10.1175/2010JAMC2550.1
  34. A. B. Davis and A. Marshak, Radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts, Rep. Prog. Phys. 73, 26801-26870 (2010). https://doi.org/10.1088/0034-4885/73/2/026801
  35. A.B. Davis, I.N. Polonsky, and A. Marshak, Space-time Green functions for diffusive radiation transport, in application to active and passive cloud probing, in Light Scattering Reviews, Vol. 4, A. Kohkanovsky (Ed.), Springer, Heidelberg (Germany), pp. 169-292 (2009). http://i3rc.gsfc.nasa.gov/Publications/Davis_etal_LSRv4_2009.pdf

Group Home Page
People in this Group
Group Projects

JPL Privacy Statement Sitemap Contact Site Manager
FIRST GOV NASA Home Page