NASA Logo Jet Propulsion Laboratory California Institute of Technology View the NASA Portal
NASA Banner
NASA Banner
NASA Banner
NASA Banner
JPL Science
JPL Science Home
Planetary Science Planetary Science
Astrophysics & Space Sciences Astrophysics & Space Sciences
Earth Science Earth Science
Center for Climate Sciences
Earth Surface And Interior
Ocean Circulation And Air Sea Interaction
Sea Level And Ice
Stratosphere And Upper Troposphere
Atmospheric Physics And Weather
Terrestrial Hydrology
Carbon Cycle And Ecosystems
Laboratory Studies And Atmospheric Observations
Tropospheric Composition
Aerosols And Clouds
Directorate Science Affiliates Directorate Science Affiliates
Open Postdoc Positions Open Postdoc Positions
Brochures Brochures
Highlights Highlights
 Tropospheric Composition: People
Kazuyuki  Miyazaki's Picture
Jet Propulsion Laboratory
M/S 233-200
4800 Oak Grove Drive
Pasadena, CA 91109
Curriculum Vitae:

Kazuyuki Miyazaki

Kazuyuki Miyazaki is a scientist who specializes in data assimilation of atmospheric composition. His research activities range from the development of chemical data assimilation systems to the study of the impact of air quality on climate and human health. He produced decadal chemical reanalyses based on assimilation of multi-constituent satellite measurements. The reanalysis concentration and emission data products provided unique information on decadal changes in the atmospheric environment that can be used for various applications in air quality and climate research. His current research focuses on development of a multi-model-based chemical data assimilation system and its applications to air quality and climate studies, observing system simulation experiments (OSSE), satellite data and chemistry-climate model evaluations, and the combined use of chemically reactive and carbon gases for emission estimations.

  • Ph.D. Geophysics, Tohoku University (2006)

Research Interests
  • Multi-constituent data assimilation of chemically reactive and carbon gases for air quality, carbon cycle, and climate studies
  • Long-term changes in atmospheric compositions and emissions
  • Formation and evaluation of satellite mission concepts through chemical data assimilation and Observing system simulation experiments (OSSEs)
  • Synergetic use of satellite, aircraft, and ground-based measurements and models
  • Evaluation of new satellite data products and chemistry-climate models


TES (Tropospheric Emission Spectrometer) is one of four science instruments aboard NASA's Aura satellite, which was launched from Vandenberg Air Force Base, California on July 15, 2004.

MLS - Microwave Limb Sounder Icon MLS - Microwave Limb Sounder
The Microwave Limb Sounder (MLS) experiments measure naturally-occurring microwave thermal emission from the limb (edge) of Earth's atmosphere to remotely sense vertical profiles of atmospheric gases, temperature, pressure, and cloud ice.

CMS Flux (Carbon Monitoring System Flux) Icon CMS Flux (Carbon Monitoring System Flux)
Carbon Monitoring System Flux (CMS Flux) incorporates the full suite of NASA observational, modeling, and assimilation capabilities to attribute CO2 climate forcing to spatially resolved emissions.

Professional Experience
  • Scientist, Jet Propulsion Laboratory, California Institute of Technology (2019-present)
  • Research Scholar, Jet Propulsion Laboratory, California Institute of Technology (2016-2017)
  • Deputy Group Leader, Japan Agency for Marine-Earth Science and Technology (2017-2019)
  • Senior Scientist, Japan Agency for Marine-Earth Science and Technology (2013-2019)
  • Research Scientist, Japan Agency for Marine-Earth Science and Technology (2011-2012)
  • Postdoctoral Scientist, Japan Agency for Marine-Earth Science and Technology (2006-2010)
  • Committee member, the IGPB・WCRP・DIVERSITAS subcommittee, Ministry of Education, Culture, Sports, Science and Technology, Japan (2015-2019)
  • Expert investigator, National Institute of Science and Technology Policy (2013-2017)
  • Visiting Scientist, International Pacific Research Center (IPRC), University of Hawaiʻi (2012-2013)
  • Visiting Scientist, Chemistry and Climate Division, Royal Netherlands Meteorological Institute (KNMI) (2010-2012)
  • Research Fellow, Category DC1: for excellent Ph.D. students, The Japan Society for the Promotion of Science for Young Scientists (2003-2006)

Selected Awards
  • NASA group achievement award for MUSES algorithm team research (2020)
  • JPL team bonus award for COVID-19 air quality research (2020)
  • NASA group achievement Award to KORUS-AQ (2017)
  • Yamamoto-Shono Award from the Meteorological Society of Japan (2012)
  • Young Scientist Award from the Japan Society of Atmospheric Chemistry (2009)
  • JAMSTEC award for Outstanding Research Accomplishments (2009)
  • Best poster award, 5th International Workshop on Global Change: Connection to the Arctic (GCCA5) (2004)
  • Japanese Government Scholarship, Ministry of Education, Culture, Sports, Science and Technology (1999-2003)

Selected Publications
  1. Gaubert, B., Emmons, L. K., Raeder, K., Tilmes, S., Miyazaki, K., Arellano Jr., A. F., Elguindi, N., Granier, C., Tang, W., Barré, J., Worden, H. M., Buchholz, R. R., Edwards, D. P., Franke, P., Anderson, J. L., Saunois, M., Schroeder, J., Woo, J.-H., Simpson, I. J., Blake, D. R., Meinardi, S., Wennberg, P. O., Crounse, J., Teng, A., Kim, M., Dickerson, R. R., He, H., Ren, X., Pusede, S. E., and Diskin, G. S.: Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20, 14617-14647,>, 2020.
  2. Miyazaki, K., Bowman, K., Sekiya, T., Jiang, Z., Chen, X., Eskes, H., Ru, M., Zhang, Y., Shindell, D., (2020). Air quality response in China linked to the 2019 novel coronavirus (COVID‐19) lockdown. Geophysical Research, Letters, 47, e2020GL089252.
  3. Elguindi, N., Granier, C., Stavrakou, T., Darras, S., Bauwens, M., Cao, H., Chen, C., Denier van der Gon, H.A.C., Dubovik, O., Fu, T.M., Henze, D.K., Jiang, Z., Keita, S., Kuenen, J.J.P., Kurokawa, J., Liousse, C., Miyazaki, K., Müller, J.‐F., Qu, Z., Solmon, F. and Zheng, B. (2020), Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions From Bottom‐Up Inventories, Top‐Down Estimates, and Emission Scenarios. Earth's Future, 8: e2020EF001520.
  4. Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Takigawa, M., and Ogochi, K.: Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005-2018, Earth Syst. Sci. Data, 12, 2223-2259,, 2020b.
  5. Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T., and Sudo, K.: Evaluation of a multi-model, multi-constituent assimilation framework for tropospheric chemical reanalysis, Atmos. Chem. Phys., 20, 931-967,, 2020a.
  6. Kuai, L., Bowman, K. W., Miyazaki, K., Deushi, M., Revell, L., Rozanov, E., Paulot, F., Strode, S., Conley, A., Lamarque, J.-F., Jöckel, P., Plummer, D. A., Oman, L. D., Worden, H., Kulawik, S., Paynter, D., Stenke, A., and Kunze, M.: Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites, Atmos. Chem. Phys., 20, 281-301,, 2020.
  7. Itahashi, S., K. Yumimoto, J Kurokawa, Y. Morino, T Nagashima, K. Miyazaki, T. Maki and T. Ohara, Inverse estimation of NOx emissions over China and India 2005-2016: contrasting recent trends and future perspectives, Environmental Research Letters, 14(12), 124020, 2019
  8. Thompson, A. M., R. M. Stauffer, T. P. Boyle, D. E. Kollonige, K. Miyazaki, M. Tzortziou, J. R. Herman, C. E. Jordan, B. T. Lamb, Comparison of Near-surface NO2 Pollution with Pandora Total Column NO2 during the Korea-United States Ocean Color (KORUS OC) Campaign, Journal of Geophysical Research: Atmospheres, 124, 13560- 13575., 2019.
  9. Huijnen, V., K. Miyazaki, J. Flemming, A. Inness, T. Sekiya, and M. Schultz, An inter-comparison of CAMS and TCR tropospheric ozone reanalysis products, Atmos. Chem. Phys. Discuss., in review, 2019.
  10. Koshin, D., K. Sato, K. Miyazaki, and S. Watanabe, An ensemble Kalman filter data assimilation system for the whole neutral atmosphere, Geosci. Model Dev. Discuss., in review
  11. He., T.-L., H.E., D. B. A. Jones, B. Huang, Y. Liu, K. Miyazaki, Z. Jiang, E. C. White, H. M. Worden, and J. R. Worden, Recurrent U-net: Deep learning to predict daily summertime ozone in the United States. arXiv preprint arXiv:1908.05841, 2019.
  12. Kanaya, Y., Miyazaki, K., Taketani, F., Miyakawa, T., Takashima, H., Komazaki, Y., Pan, X., Kato, S., Sudo, K., Sekiya, T., Inoue, J., Sato, K., and Oshima, K.: Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67° S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport, Atmos. Chem. Phys., 19, 7233-7254,, 2019.
  13. Miyazaki, K., Sekiya, T., Fu, D., Bowman, K. W., Kulawik, S. S., Sudo, K., et al., Balance of emission and dynamical controls on ozone during the Korea‐United States Air Quality campaign from multiconstituent satellite data assimilation. Journal of Geophysical Research: Atmospheres, 124, 387-413., 2019.
  14. Tang, W., Arellano, A. F., Gaubert, B., Miyazaki, K., and Worden, H. M.: Satellite data reveal a common combustion emission pathway for major cities in China, Atmos. Chem. Phys., 19, 4269-4288,, 2019.
  15. Jiang, Z., B. C McDonald, H. M Worden, J. R Worden, K. Miyazaki, Z. Qu, D. K. Henze, D. Jones, A. Arellano, E. Fischer, L. Zhu, F. Boersma, Unexpected slowdown of US pollutant emission reduction in the past decade, Proc. Natl. Acad. Sci. USA,, 2018
  16. Sekiya, T., Miyazaki, K., Ogochi, K., Sudo, K., and Takigawa, M.: Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0, Geosci. Model Dev., 11, 959-988,, 2018.
  17. Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807-837,, 2017.
  18. Miyazaki, K. and Bowman, K.: Evaluation of ACCMIP ozone simulations and ozonesonde sampling biases using a satellite-based multi-constituent chemical reanalysis, Atmos. Chem. Phys., 17, 8285-8312,, 2017.
  19. Miyazaki, K., Iwasaki, T., Kawatani, Y., Kobayashi, C., Sugawara, S., and Hegglin, M. I.: Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis data sets, Atmos. Chem. Phys., 16, 6131-6152,, 2016.
  20. Miyazaki, K., Iwasaki, T., Kawatani, Y., Kobayashi, C., Sugawara, S., and Hegglin, M. I.: Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis data sets, Atmos. Chem. Phys., 16, 6131-6152,, 2016.
  21. Miyazaki, K., Eskes, H. J., and Sudo, K.: A tropospheric chemistry reanalysis for the years 2005-2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data, Atmos. Chem. Phys., 15, 8315-8348,, 2015.
  22. Miyazaki, K., Eskes, H. J., Sudo, K., and Zhang, C.: Global lightning NOx production estimated by an assimilation of multiple satellite data sets, Atmos. Chem. Phys., 14, 3277-3305,, 2014.
  23. Miyazaki, K., and H. Eskes, Constraints on surface NOx emissions by assimilating satellite observations of multiple species, Geophys. Res. Lett., 40,, 2013.
  24. Miyazaki, K., Eskes, H. J., and Sudo, K., Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns, Atmos. Chem. Phys., 12, 2263-2288,, 2012.
  25. Miyazaki, K., H. J. Eskes, K. Sudo, M. Takigawa, M. van Weele, and K. F. Boersma, Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions, Atmos. Chem. Phys., 12, 9545-9579,, 2012.
  26. Miyazaki K., T. Maki, P. K. Patra, and T. Nakazawa, CO2 fluxes estimated with satellite, aircraft, and surface observations using an ensemble-based 4D data assimilation system, J. Geophys. Res., 116, D16306,, 2011.
  27. Miyazaki K., S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Sato, and M. Takahashi, Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part I: Potential vorticity and heat budget analysis, J. Atmos. Sci., 67, No. 5, 1293-1314, 2010.
  28. Miyazaki K., K. Sato, S. Watanabe, Y. Kawatani, Y. Tomikawa, and M. Takahashi, Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics, J. Atmos. Sci., 67, No. 5, 1315-1336, 2010.
  29. Miyazaki, K., T. Machida, P.K. Patra, T. Iwasaki, Y. Sawa, H. Matsueda, and T. Nakazawa, Formation mechanisms of latitudinal CO2 gradient in the upper troposphere over the subtropics and tropics, J. Geophys. Res., 114, D03306,, 2009.
  30. Miyazaki, K., and T. Iwasaki, Isentropic diffusion coefficient derived from chemical constituent data, Scientific Online Letters on the Atmosphere, Vol. 5, 009-012,, 2009.
  31. Miyazaki, K., Performance of a local ensemble transform Kalman filter for the analysis of atmospheric circulation and distribution of long-lived tracers under idealized conditions, J. Geophys. Res., 114, D19304,, 2009.
  32. Miyazaki, K., P. K. Patra, M. Takigawa, T. Iwasaki, and T. Nakazawa, Global-scale transport of carbon dioxide in the troposphere, J. Geophys. Res., 113, D15301,, 2008.

Group Home Page
People in this Group
Group Projects

JPL Privacy Statement Sitemap Contact Site Manager